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Abstract: Current multi-AUV systems are far from being capable of fully autonomously taking
over real-life complex situation-awareness operations. As such operations require advanced
reasoning and decision-making abilities, current designs have to heavily rely on human operators.
The involvement of humans, however, is by no means a guarantee of performance; humans can
easily be over-whelmed by the information overload, fatigue can act detrimentally to their
performance, properly coordinating vehicles actions is hard, and continuous operation is all but
impossible. Within the European funded project NOPTILUS we take the view that an effective
fully-autonomous multi-AUV concept/system, is capable of overcoming these shortcomings, by
replacing human-operated operations by a fully autonomous one. In this paper, we present a
new approach that is capable to efficiently and fully-autonomously navigate a team of AUV’s
when deployed in exploration of unknown static and dynamic environments towards providing
accurate static/dynamic maps of the environment. Additionally to achieving to efficiently and
fully-autonomously navigate the AUV team, the proposed approach possesses certain advantages
such as its extremely computational simplicity and scalability, and the fact that it can very
straightforwardly embed and type of physical or other constraints and limitations (e.g., obstacle
avoidance, nonlinear sensor noise models, localization fading environments, etc).

Keywords: SLAM-TT, Exploration, AUV, autonomous navigation

1. INTRODUCTION

Despite the advances made through current multi-AUV
research endeavors, the existing or planned multi-AUV
systems are far from being capable of fully autonomously
taking over real-life complex situation-awareness opera-
tions. Such operations require that the overall system is
equipped with reasoning, situation understanding, plan-
ning, and decision-making abilities attributes that exist-
ing/planned designs are unable to provide. Instead, cur-
rent designs have to heavily rely on human operators who
assign a set of high-level tasks to the AUV’s (e.g. a specific
set of locations or paths/targets the AUV’s have to visit
or follow, respectively). As soon as the high-level tasks
have been assigned, the existing/planned designs focus on
accomplishing them successfully while taking into account

★ The research leading to these results has received funding from the
European Communities Seventh Framework Programme (FP7/2007-
2013) under grant agreement n. 270180 (NOPTILUS).

constraints and requirements, such as obstacle-avoidance,
energy-consumption, minimum formation error, etc. As
such, existing/planned designs do not provide integrated
AUV systems that are able to (a) automatically assess
and understand the current situation (with regards to
the particular mission the AUV’s have been deployed for)
and (b) autonomously assign tasks/navigate the AUV’s
so that the overall system accomplishes successfully and
fully autonomously the desired mission. Even worse, and
mostly due to the involvement of human operators, ex-
isting approaches do not provide any guarantees that
the overall multi-AUV mission will be accomplished opti-
mally (or, at least, nearly-optimally). Instead, there exist
many cases where operator-made decisions are not just
far from being optimal but they may even put the suc-
cess of the overall mission at stake. Within the European
funded project NOPTILUS we take the view that an
effective fully-autonomous multi-AUV concept/system, is
capable of overcoming these shortcomings, by replacing



human-operated operations by a fully autonomous one.
In this paper, we present a new approach that is capable
to efficiently and fully-autonomously navigate a team of
AUV’s when deployed in exploration of unknown static
and dynamic environments towards providing accurate
static/dynamic maps of the environment. Additionally to
achieving to efficiently and fully-autonomously navigate
the AUV team, the proposed approach possesses certain
advantages such as its extremely computational simplicity
and scalability, and the fact that it can very straightfor-
wardly embed and type of physical or other constraints
and limitations (e.g., obstacle avoidance, nonlinear sen-
sor noise models, localization fading environments, etc).
In the heart of the proposed approach lies the so-called
Cognitive-based Adaptive Optimization (CAO) algorithm,
that has been successfully applied in real-life to the prob-
lem of optimal surveillance coverage using swarms of flying
robots [L. Doitsidis and Scaramuzza, 2012, conditionally
accepted, Renzaglia et al., 2012, in press].

2. AUTONOMOUS MULTI-AUV NAVIGATION FOR
EXPLORATION OF UKNOWN ENVIRONMENTS

We consider the problem where NR AUV’s are deployed
in an underwater environment in order to estimate as
accurately as possible the 3D positions of NL static feature
points (landmarks) as well as the (moving) 3D positions of
NT dynamic targets. Contrary to aerial or ground robots,
the design for exploration using AUV’s will have to take
into account the very strict limitations of the underwater
environment the AUV operate on: very low bandwidth
communications, lack of GPS signals underwater, and very
limited visibility of the AUV’s vision and sonar sensors
are some of the limitations that render autonomous multi-
AUV navigation for exploration a very challenging task.
Below, we list all different major limitations/challenges
that any strategy for autonomous multi-AUV navigation
for exploration has to take into account:

(LocFade) As underwater there is no GPS signal, the
AUV’s have to heavily rely on a combination of IMU
signals, bathymeteres, etc for localization. Typically, an
EKF (or similar) algorithm is employed which is initialized
on the surface and – while underwater – it fuses the
different signals coming from the on-board AUV sensors
(IMU, bathymeters, etc) as well as from signals coming
from the other AUV’s. No matter how advanced techno-
logically sensors and communications are employed, the
typical situation is that localization is fading, i.e., the error
between the actual AUV position and its estimation is
diverging. In cases where the error becomes unacceptably
large, one or more of the AUV’s must somehow re-gain
localization e.g., by re-surfacing or by getting in contact
with a surface vehicle.

(NL-Noise) The typical assumption made in most sys-
tems that the sensor noise is additive Gaussian noise is
very restrictive and not realistic in AUV applications:
sonar- or vision-based sensors used for mapping and ex-
ploration typically are affected by Nolinear Noise: typi-
cally, the noise affecting such sensors is proportional to
the sensor-to-sensing point distance, i.e., the larger is the
AUV-to-sensing point distance, the large the sensor noise
is. As a result, it is more realistic to assume a multiplica-
tive sensor noise model that takes the form

y = ℎ(x, q) + d(x, q)� (1)

where y is the sensor measurement, x, q are the positions
of the AUV and the sensing point (landmark or target),
respectively, ℎ(x, q) is the sensor model in the noise-free
case, d(x, q) is the distance between x and q and � is a
standard Gaussian noise.

(LimVis) In addition to the (NL-Noise) limitation and
contrary to e.g., vision sensors in open-air environments,
the AUV vision and sonar sensors are of very limited
visibility. As a result, additionally to the nonlinear sensor
noise assumption (2), the sensor model for vision and
sonar sensors should be augmented to count for the limited
visibility constraint. Moreover, the sensor model must be
augmented to count for the case where there is no line-of-
sight between the AUV and the sensing point (e.g., there
is an obstacle in between). As a result, the actual sensor
model becomes:

yx−q =

⎧



⎨



⎩

undefined if ∥x− q∥ ≥ tℎres
undefined if there is no line-of-

sight between x and q
ℎ(x, q) + d(x, q)� otherwise

(2)

where yx−q denotes the sensor measurement from an AUV
at position x to a sensing point at position q, tℎres denotes
the visibility threshold beyond which the vision or sonar
sensor does not “see” and ∥⋅∥ denotes the Euclidean norm.

(ObsAvoid) As in any real-life robot application, the
AUV navigation system must make sure that the AUV’s
avoid obstacles as well as they remain within a pre-
specified area. Usually, it is realistic to assume that the
AUV’s can detect with accuracy the position of the obsta-
cles nearby; however, obstacle avoidance may have catas-
trophic consequences to the succes of the overall naviga-
tion/exploration. See next section for such an example.

(Scalable) Finally, a main issue for any multi-AUV nav-
igation algorithm for exploration is scalability. Of course,
scalability is an issue in any multi-robot application; how-
ever, in the case of multi-AUV applications, the scalability
issue becomes way more significant mainly due to the
limited bandwidth of AUV’s communication systems that
allow ony a few hundreds of bits/second to be transmit-
ted/received.

Having all these limitations in mind, we now proceed to
present the proposed methodology along with the some
remarks on the limitations of existing approaches.

2.1 Problem Definition

Typically, when a single AUV or a team of AUV’s is
deployed to map an unknown static or dynamic environ-
ment, the positions of the landmarks, targets as well as the
positions of the AUV’s themselves are estimated through
a so-called Simultaneous Localization And Mapping and
Target Tracking (SLAM-TT) algorithm, which employs
an EKF or similar approach to simultaneously estimate
all the above-mentioned quantities, see e.g. [?]. Over the
past years, very powerful approaches have been developed
that can quite efficiently provide the estimates of the land-
marks’, targets’ and AUV’s’positions, provided that the
trajectories of the AUV’s are efficiently designed. However,
efficient design of the AUV trajectories is not trivial: in
most cases, enough a priori knowldge of the environment



to be explored is required so that an off-line design of
the AUV trajectories is performed. Off-line design of the
AUV trajectories is, of course, by no means a guarantee
of performance as the AUV’s may enter into highly unob-
servable states, they may spend “too much time” in areas
with no important information for the exploration task,
while they may pass very fast through very crucial areas
for the exploration task, producing thus a very poor map
of these areas, etc.

For this reason, the last few years special attention have
been paid in developing techniques for active exploration
(also known as active SLAM-TT) [?]: using the infor-
mation received so far, the AUV next positions are de-
cided so they optimize the mapping information of the
SLAM-TT algorithm. Although, there are many different
approaches proposed for doing so, the vast majority of
those approaches are based on the following concept: check
all feasible next AUV positions [e.g., all next AUV posi-
tions that do not violate the (ObsAvoid) constraints as
well as constraints that have to do with the maximum
allowable AUV speed) and find the ones that optimize
some information metric that corresponds to the accuracy
of the SLAM-TT algorithm; then, move to the positions
that optimize this information metric, and so on. Different
types of such information metrics have been proposed,
with the most popular beign the trace of the EKF error
covariance matrix [?]. In such a case the AUV’s are moving
to the next positions that minimize the average (expected)
EKF estimation error.

There two big issues with all the above mentioned active
exploration algorithms: the first is scalability, since it
computationally not feasible to check all possible combi-
nations of next AUV’s positions. As a matter of fact, such
algorithms become practically infeasible even in the single
AUV case. There are, of course, many different approaches
that relax the computational requirement of checking all
possible next positions at the expense of sacrificying effi-
ciency. However, even in the unrealistic case where infinite
computing power would be available, as these algorithms
are based on EKF – which, in turn, is based on linearizing
the highly nonlinear multi-AUV/environment dynamics
– the presense of highly nonlinear constraints (e.g., for
obstacle avoidance or for not leaving a prespectified area)
may be destructive to the efficiency of the overall active
exploration mission. The results of such a case are depicted
in Figure 1: three AUV’s have been deployed for estimating
the location of 30 static landmarks and their trajectories
are designed so they minimize the trace of the EKF error
covariance matrix, while they avoid obstacles (landmarks)
and they remain within the cube [1,+1]3. Although, in
the time-interval [0, 79] the overall algorithm behaves quite
efficiently, it starts diverging as soon as the AUV’s “hit”
the boundaries of the area they have to remain within.

In this paper, we propose a totally different approach
to the active exploration problem. In order to describe
the proposed approach we need some preliminaries. Let
P = {x(i)}NR

i=1 denote the configuration of the AUV team,

where x(i) denotes the position of the i-th AUV. We will
say that a landmark or a target q = (x, y, z) is visible if
there exists at least one AUV so that

∙ the AUV and the point q are connected by a line-of-
sight;

∙ the AUV and the point q are at a distance smaller
than a given threshold value (defined as the maximum
distance the robot’s sensor can ”see“).

Given a particular team configuration P , we let V denote
the subset of all visible landmarks and targets, i.e., V
consists of all landmarks and targets q that are visible
from the AUV’s.

Also, for any landmark or a target q = (x, y, z), let q̂
denote its estimate as produced by e.g., an EKF. We
will say that the landmark or the target q is currently
accurately-estimated, if the normed-error ∥q − q̂∥∣ is be-
low a certain accuracy threshold. We will denote with
W the set of all landmarks and targets that are cur-
rently accurately-estimated. Please note that in case a
landmark becomes accurately-estimated then it wil remain
accurately-estimated thereafter (i.e., it remains within W
thereafter); however, this is not true for a moving target
which may belong to W at some point and then leave this
subset later.

Contrary to the subset V of invisible landmarks/targets
which can be calculated on-line (assuming that the num-
bers NL and NT are fixed) this is not true for the subset
V which cannot be calculated on-line as its calculation
requires knowledge of the true landmark/target positions.
However, in practice the subset V can be estimated with
high accuracy from e.g., the EKF error covariance matrix
(e.g., if all three elements of the diagonal of the EKF
error covariance matrix that correspond to a particular
landmark/target are below a certain accuracy threshold,
then this landmark/target belongs to V).

By using the above definitions, we introduce the follow-
ing 1 active exploration cost criterion:

J(P) =

∫

q∈V,q ∕∈W

min
i∈{1,...,NR}

∥x(i) − q∥2dq

+K

∫

q ∕∈V∪W

dq (3)

where K is a user-defined positive constant. Please note
that having the AUV team minimizing the above criterion,
is equivalent to have the AUV’s come as close as possible
to those landmarks/targets that are currently visible and
have not been accurately-estimated [first term in the
RHS of (3)] and, concurrently moving the AUV’s so that
they “see” those landmarks/targets that are currently not
visible and not accurately-estimated [second term in the
RHS of (3)]. In other words, the first term is responsible for
moving the AUV’s closer to the landmarks/targets so that
they reduce the sensor noise effect and they can “see them
better”, while the second term is responsible for moving
the AUV’s closer to landmarks/targets that “have not seen
before” (or “have been poorly seen”). The constant K

1 Please note that the
∫

q ∕∈V∪W
dq cannot be, in general, computed

in practice; as this term involves those landmarks/targets that are
neither visible nor accurately-estimated, its computation requires
that the exact location of landmarks/targets is known. This problem,
however, can be easily overcome by noticing that

∫

q ∕∈V∪W
dq =

∫

q
dq −

∫

q∈V∪W
dq and the integral

∫

q
dq is constant.
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Fig. 1. Autonomous exploration by moving towards minimizing the trace of EKF error covariance matrix: NR =
3, NL = 30, NT = 0, (LimVis), (LocFade) and (Scalable), i.e., by assuming unlimited visibility, perfect localization
and infinite computing power. The estimation error starts diverging as soon as the AUV’s hit the boundary of the
cube [1,+1]3 the AUV’s are constrained to remain within.

serves as a weight for giving less or more priority to one
of the terms of the RHS of (3).

Please note that if the AUV’s’ trajectories achieve to
render the value of J zero (or sufficiently small), then the
overall active exploration mission has been successfully
accomplished provided that the position of all AUV’s is
accurately known. However, as the position of the AUV’s
[see limitation (LocFade)] is by no means accurately known
in AUV missions, the active exploration criterion must be
modified so as to account for this problem. Although there
are many different ways to tackle such a problem, one
possible way – and this is the one adopted in the simulation
experiments to be reported later in this paper – is by
assuming the existence of an additional “fictitious” target.
The position of this “fictitious” target along the z-axis is
always on the sea-surface and its x- and y-positions are
the same with the AUV that is currently closer to the sea-
surface. Furthermore, it is assumed that this “fictitious”
target remains accurately-estimated as long as the AUV’s
are sufficiently localized: whenever the AUV’s’ localization
accuracy exceeds a certain threshold then the ‘fictitious”
target becomes non-accurately-estimated (but visible) and
as a result one of the AUV’s is re-surfacing in its attempt
to come close to the “fictitious” target [i.e., it attempts to
minimize the first term in the RHS of (3)]. A large weight
in the first term in the RHS of (3) for the particular part
of this term that corresponds to the distance between the
“fictitious” target and its closest AUV may be also added

in order to make sure that the criterion J gives priority to
re-surfacing one of the AUV’s in cases of poor localization.

3. THE COGNITIVE-BASED ADAPTIVE
OPTIMIZATION APPROACH

Having defined the active exploration criterion, we will
now proceed on presenting the proposed algorithm for
autonomously navigating the AUV’s towards minimizing
such a criterion. The algorithm to be used is based on the
so called Cognitive-based Adaptive Optimization (CAO)
approach [Kosmatopoulos et al., 2007, Kosmatopoulos,
2009, Kosmatopoulos and Kouvelas, 2009], which was
originally developed and analyzed for the optimization of
functions for which an explicit form is unknown but their
measurements are available as well as for the adaptive
fine-tuning of large-scale nonlinear control systems. In this
section, we will describe how the CAO approach can be
appropriately adapted and extended so that it is applicable
to the problem of autonomous navigation of AUV’s for
exploration of unknown environments. More explicitly, let
us consider the problem where NR AUV’s are involved in
an exploration task as described in the previous section.
The active exploration criterion (3) is a function of the
AUV’s positions, i.e.,

Jk = J
(

x
(1)
k , . . . , x

(NR)
k

)

(4)

where k = 0, 1, 2, . . . denotes the time-index, Jk denotes
the value of the active exploration criterion at the k-th



time-step, x
(1)
k , . . . , x

(NR)
k denote the position vectors of

the AUV’s 1, . . . , NR, respectively, and J is a nonlinear
function which depends – apart from the AUV’s positions
– on the particular environment where the AUV’s live (e.g.,
position of landmarks/targets).

Due to the dependence of the function J on the particular
environment characteristics, the explicit form of the func-
tion J is not known in practical situations; as a result,
standard optimization algorithms (e.g., steepest descent)
are not applicable to the problem in hand. However, in
most practical cases, like the one treated in this paper,
the current value of the active exploration criterion can be
estimated from the AUV’s sensor measurements. In other
words, at each time-step k, an estimate of Jk is available
through AUV’s sensor measurements,

Jn
k = J

(

x
(1)
k , . . . , x

(NR)
k

)

+ �k (5)

where Jn
k denotes the estimate of Jk and �k denotes

the noise introduced in the estimation of Jk due to the
presence of noise in the AUV’s sensors. Please note that,
although it is natural to assume that the noise sequence
�k is a stochastic zero-mean signal, it is not realistic to
assume that it satisfies the typical Additive White Noise
Gaussian (AWNG) property even if the AUV’s sensor noise
is AWNG: as J is a nonlinear function of the AUV’s
positions (and thus of the AUV’s sensor measurements),
the AWNG property is typically lost.

Apart from the problem of dealing with a criterion for
which an explicit form is not known but only its noisy
measurements are available at each time, efficient AUV
navigation algorithms have additionally to deal with the
problem of restricting the AUV’s positions so that obstacle
avoidance constraints are met. In other words, at each

time-instant k, the vectors x
(i)
k , i = 1, . . . , NR should

satisfy a set of constraints which, in general, can be
represented as follows:

C
(

x
(1)
k , . . . , x

(NR)
k

)

≤ 0 (6)

where C is a set of nonlinear functions of the AUV’s
positions. As in the case of J , the function C depends on
the particular environment characteristics (e.g., location
of obstacles, terrain morphology) and an explicit form
of this function may be not known in many practical
situations; however, it is natural to assume that the
active exploration algorithm is provided with information
whether a particular selection of AUV’s positions satisfies
or violates the set of constraints (6).

Given the mathematical description presented above, the
active exploration problem can be mathematically de-

scribed as the problem of moving x
(1)
k , . . . , x

(NR)
k to a set

of positions that solves the following constrained optimiza-
tion problem:

minimize (4)
subject to (6) .

(7)

As already noticed, the difficulty in solving, in real-time
and in real-life situations, the constrained optimization
problem (7) lies in the fact that explicit forms for the
functions J and C are not available. To circumvent this
difficulty, the CAO approach, appropriately modified to
be applicable to the problem in hand, is adopted. Indeed
this algorithm is capable of efficiently dealing with opti-

mization problems for which the explicit forms of the ob-
jective function and constraints are not known, but noisy
measurements/estimates of these functions are available
at each time-step. In the following, we describe the CAO
approach as applied to the multi-robot coverage problem
described above.

The CAO algorithm used within the proposed approach
takes the same form as the one of [L. Doitsidis and
Scaramuzza, 2012, conditionally accepted, Renzaglia et al.,
2012, in press] and is a an extension of the CAO ver-
sions presented and analyzed in [Kosmatopoulos, 2009,
Kosmatopoulos and Kouvelas, 2009]. The main difference
is that while [Kosmatopoulos, 2009, Kosmatopoulos and
Kouvelas, 2009] address the unconstrained version of the
problem (7), the work of [L. Doitsidis and Scaramuzza,
2012, conditionally accepted, Renzaglia et al., 2012, in
press], extended the CAO approach of [Kosmatopoulos,
2009, Kosmatopoulos and Kouvelas, 2009] so that it ef-
ficiently takes care of the constraint (6). In order to do
so, the CAO approach of [Kosmatopoulos, 2009, Kos-
matopoulos and Kouvelas, 2009] is augmented by a special
– yet simple – projection mechanism. Theorem 1 estab-
lishes that the introduction of such a projection mech-
anism does not destroy the nice properties of the CAO
approach of [Kosmatopoulos, 2009, Kosmatopoulos and
Kouvelas, 2009]; as a matter of fact, according to The-
orem 1 presented below, the CAO version of [L. Doitsidis
and Scaramuzza, 2012, conditionally accepted, Renzaglia
et al., 2012, in press] is proven to be approximately a pro-
jected gradient-descent algorithm, while the ones of [Kos-
matopoulos, 2009, Kosmatopoulos and Kouvelas, 2009]
have been established to be approximate unconstrained
gradient-descent algorithms.

As a first step, the CAO approach makes use of function
approximators for the estimation of the unknown objective
function J at each time-instant k according to

Ĵk

(

x
(1)
k , . . . , x

(NR)
k

)

= #�
k�

(

x
(1)
k , . . . , x

(NR)
k

)

. (8)

Here Ĵk

(

x
(1)
k , . . . , x

(NR)
k

)

denotes the approximation/ es-

timation of J generated at the k-th time-step, � denotes
the nonlinear vector of L regressor terms, #k denotes the
vector of parameter estimates calculated at the k-th time-
instant and L is a positive user-defined integer denoting
the size of the function approximator (8). The vector �
of regressor terms must be chosen so that it satisfies the
so-called Universal Approximation Property [Polycarpou
and Ioannou, 1991], i.e. it must be chosen so that the
approximation accuracy of the approximator (8) is an
increasing function of the approximator’s size L. Polyno-
mial approximators, radial basis functions, kernel-based
approximators, etc, are known to satisfy such a property,
see [Polycarpou and Ioannou, 1991] and the references
therein.

The parameter estimation vector #k is calculated accord-
ing to

#k = argmin
#

1

2

k−1
∑

ℓ=ℓk

(

Jn
ℓ − #��

(

x
(1)
ℓ , . . . , x

(NR)
ℓ

))2

(9)

where ℓk = max{0, k−L−Tℎ} with Tℎ being a user-defined
nonnegative integer. Standard least-squares optimization
algorithms can be used for the solution of (9).



As soon as the estimator Ĵk is constructed according to (8),
(9), the set of new AUV’s positions is selected as follows:
firstly, a set of N candidate AUV’s positions is constructed
according to 2

x
i,j
k = x

(i)
k +�k�

i,j
k , i ∈ {1, . . . , NR}, j ∈ {1, . . . , N} , (10)

where �
i,j
k is a zero-mean, unity-variance random vector

with dimension equal to the dimension of x
(i)
k and �k is a

positive real sequence which satisfies the conditions:

lim
k→∞

�k = 0,

∞
∑

k=1

�k = ∞,

∞
∑

k=1

�2
k < ∞ . (11)

Among all N candidate new positions x1,j
k , . . . , x

NR,j
k , the

ones that correspond to non-feasible positions – i.e., the
ones that violate the constraints (6) – are neglected and
then the new AUV’s positions are calculated as follows:
[

x
(1)
k+1, . . . , x

(NR)
k+1

]

= argmin
j ∈ {1, . . . , N}

x
i,j
k not neglected

Ĵk

(

x
1,j
k , . . . , x

NR,j
k

)

The idea behind the above logic is simple: at each time-
instant a set of many candidate new AUV’s positions is
generated. The candidate, among all feasible ones, that
provides the best estimated value Ĵk of the coverage
criterion is selected as the new set of AUV’s positions.
The random choice for the candidates is essential and
crucial for the efficiency of the algorithm, as such a choice
guarantees that Ĵk is a reliable and accurate estimate for
the unknown function J ; see [Kosmatopoulos, 2009, Kos-
matopoulos and Kouvelas, 2009] for more details. On the
other hand, the choice of a slowly decaying sequence �k, a
typical choice of adaptive gains in stochastic optimization
algorithms (see e.g., [Bertsekas and Tsitsiklis, 2000]) is
essential for filtering out the effects of the noise term �k [cf.
(5)]. The next theorem summarizes the properties of the
CAO algorithm described above; the proof can be found
in [Renzaglia et al., 2012, in press].

Theorem 1. Let x(1∗), . . . , x(N∗

R
) denote any – local – min-

imum of the constrained optimization problem (7). Let

N ≥ 2NR×dim
(

x
(i)
k

)

and, moreover, the vector � satisfy

the Universal Approximation Property. Assume also that
the functions J , C are either continuous or discontinuous
with a finite number of 3 discontinuities. Then, the CAO-
based multi-robot coverage algorithm as described above

guarantees that the AUV’s positions x
(1)
k , . . . , x

(NR)
k will

converge to one of the local minima x(1∗), . . . , x(N∗

R
) almost

surely, provided that the size L of the regressor vector �
is larger than a lower bound L̄.

2 According to [Kosmatopoulos, 2009, Kosmatopoulos and Kouve-
las, 2009] it suffices to choose N to be any positive integer larger or
equal to 2×[the number of variables being optimized by CAO]. In our

case the variables optimized are the robot positions x
(1)
k

, . . . , x
(NR)
k

and thus it suffices for N to satisfy N ≥ 2NR × dim

(

x
(i)
k

)

.

3 Please note that the family of “discontinuous functions with a
finite number discontinuities” corresponds to the family of functions
that can be approximated with arbitrary accuracy by continuous
ones [Jin et al., 1995]. For instance, terrains with discontinuities along
e.g., a closed or open curve belong to this family of functions and so
do the corresponding functions J and C.

4. SIMULATION EXPERIMENTS

In order to test the efficiency of the proposed approach,
extensive simulation experiments have been performed.
The details of the simulation environment are as follows:

∙ The number of AUVs, landmarks and targets were
choosen according to NR = 3, NT = 2, NL = 300
(please note that the actual algorithm assumes an
extra “fictitious” target for re-surfacing purposes; see
section 2.1). The AUVs are restricted to lie in the
cube [−1,+1]3; the landmarks are spread randomly in
the bottom half of the cube [−1,+1]3 and the target
trajectories are generated using a zero-acceleration
model [?].

∙ The AUV-to-landmark and AUV-to-target sensors
were assumed to be range sensors concatenated by
multiplicative noise as follows:

yx−q =

⎧



⎨



⎩

undefined if ∥x− q∥ ≥ tℎres
undefined if there is no line-of-

sight between x and q
ℎ(x, q) + d(x, q)� otherwise

(12)
where � is a Gaussian noise of variance 0.01. The
visibility thresholds were set equal to 0.4 for the AUV-
to-landmark sensors and infinite for the AUV-to-
target sensors. Also, a line-of-site between the AUV
and a landmark/target or another AUV was assumed
in case there is no landmark/target or another AUV
in a distance less than 0.1 from the line connecting
the AUV with the landmark/target or another AUV.

∙ All AUVs were assumed to have constant orienta-
tion that, additionally, does not have any effect on
the sensing capabilities or the sensor model (12).
Moreover and for simplicity a simple linear model for
the AUV dynamics was assumed, and no effect from
external disturbances (e.g., currents or turbulences)
was considered.

∙ Finally, a simple model for the GPS-related localiza-
tion fading was considered. More precisely, it was
assumed that the position accuracy of the AUVs
decreases proportionally to the total distance traveled
by the AUVs; moreover, as soon as one of the AUVs
re-surfaces then all of them get perfectly localized.
Such an assumption, although over-simplistic, was
sufficient in order to test the capabilities of the pro-
posed algorithm to re-surface the AUVs.

∙ A landmark, target or AUV

Figure 2 exhibits some snapshots of a particular simulation
experiment. As it is seen, the CAO-based multi-AUV
exploration achieves to estimate accurately most of the
landmarks (the black landmarks correspond to the ones
that are accurately estimated and the cyan ones to the ones
that are non-accurately estimated). Figure exhibits the
time-history of the norm of the estimation landmark error
for the same experiment. What is really very interesting
regarding the behaviour of the proposed algorithm can
be seen in Figures 4 and 5, respectively: whenever one
of the target (resp. the AUVs) becomes non-accurately-
estimated (resp. become poorly localized), the CAO-based
algorithm navigates one or more of the AUVs closer to the
target (resp. it resurfaces one of the AUVs) so the target



0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18
Norm of Estimation Error

time

Fig. 3. Autonomous exploration using CAO: NR =
3, NL = 30, NT = 2 and by incorporating all of the
limitations listed in section 2.1: Norm of Landmark
Estimation Error
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Fig. 4. Autonomous exploration using CAO: NR =
3, NL = 30, NT = 2 and by incorporating all of the
limitations listed in section 2.1: Distances between the
targets and its closest AUV.

becomes accurately-estimated again (resp. the AUV team
becomes accurately localized again).

We close this section, be referring to Figure 6 where the
proposed algorithm is compared against the case of a
purely random algorithm (i.e., the AUV are randomly
choosen by making sure, though, that the trajectories do
not violate any of the obstacle avoidance, maximum speed,
etc, constraints). As a random trajectory motion cannot
handle efficiently the cases of target tracking as well as
the problem of AUV re-surfacing, in the comparison the
AUVs were assumed perfectly localized and there was no
target to track (i.e., the AUVs were deployed to perform
a pure landmark estimation task). 20 different sets of
simulation experiments (random choices for the locations
of the landmarks) were executed and Figure 6, clearly
exhibits the superiority of the proposed approach.

5. CONCLUSIONS

Current multi-AUV systems are far from being capable of
fully autonomously taking over real-life complex situation-
awareness operations. As such operations require advanced
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Fig. 5. Autonomous exploration using CAO: NR =
3, NL = 30, NT = 2 and by incorporating all of the
limitations listed in section 2.1: Height (depth) of the
three AUVs
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Fig. 6. Autonomous exploration using CAO and Random
trajectories: NR = 3, NL = 30, NT = 0 and by
incorporating all of the limitations listed in section 2.1
except (LocFade) : Comparison of different evaluation
criteria for 20 different experiments.

reasoning and decision-making abilities, current designs
have to heavily rely on human operators. In this paper,
we presented a new approach that is capable to efficiently
and fully-autonomously navigate a team of AUV’s when
deployed in exploration of unknown static and dynamic
environments towards providing accurate static/dynamic
maps of the environment. Realistic simulation experiments
exhibited the efficiency of the proposed approach.
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