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Abstract

This paper presents a distributed algorithm applicable to a wide range of practical multi-robot applications. In such

multi-robot applications, the user-defined objectives of the mission can be cast as a general optimization problem, without

explicit guidelines of the subtasks per different robot. Owing to the unknown environment, unknown robot dynamics, sen-

sor nonlinearities, etc., the analytic form of the optimization cost function is not available a priori. Therefore, standard

gradient-descent-like algorithms are not applicable to these problems. To tackle this, we introduce a new algorithm that

carefully designs each robot’s subcost function, the optimization of which can accomplish the overall team objective.

Upon this transformation, we propose a distributed methodology based on the cognitive-based adaptive optimization

(CAO) algorithm, that is able to approximate the evolution of each robot’s cost function and to adequately optimize its

decision variables (robot actions). The latter can be achieved by online learning only the problem-specific characteristics

that affect the accomplishment of mission objectives. The overall, low-complexity algorithm can straightforwardly incor-

porate any kind of operational constraint, is fault tolerant, and can appropriately tackle time-varying cost functions. A

cornerstone of this approach is that it shares the same convergence characteristics as those of block coordinate descent

algorithms. The proposed algorithm is evaluated in three heterogeneous simulation set-ups under multiple scenarios,

against both general-purpose and problem-specific algorithms.

Keywords
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1. Introduction

The new era of artificial intelligence and robotics has an

ever-increasing interest in multi-robot systems. The causal-

ity of this trend is outlined in the following three points.

First, the recent advances in hardware and communications

allow the cooperative deployment of many affordable

robots. Second, the use of multiple robots introduces redun-

dancy, which can be translated into mission speed-up and/

or fault-tolerant characteristics (e.g., in cases when one or

more robots faces a malfunction). Third, the utilization of

multi-robot teams may tackle problems that cannot be

solved with a single robot (e.g., continuous monitoring/

guarding a large area). Robot missions in which the multi-

robot configuration can be more appealing include surveil-

lance in hostile environments (e.g., areas contaminated with

biological, chemical, or even nuclear wastes), law enforce-

ment missions (e.g., border patrol), agriculture activities

(e.g., soil sampling), and cleaning missions (e.g., cleaning

up an oil spill).

1.1. Related work

Unfortunately, many of the multi-robot tasks have been

proven to be extremely difficult. For example, the online

generation of robot trajectories so as to maximize
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simultaneous localization and mapping (SLAM) accuracy

and efficiency is NP-hard (Kollar and Roy, 2008a; Singh

et al., 2009). Moreover, the offline design of multi-robot

trajectories in order to cover a known area of interest in

minimum time/energy has been proven NP-complete

(Zheng et al., 2005), etc.

To alleviate the above problem, many multi-robot

approaches attempt to solve a simplified version of the

original problem. In such a way, it is possible to construct a

computationally feasible solution, utilizing optimal control

or dynamic programming techniques, at the expense, of

course, of sacrificing global optimality. For instance, to ren-

der the decision-making scheme computationally feasible,

many methodologies (De La Cruz and Carelli, 2008; Le Ny

and Pappas, 2009; Seyboth et al., 2015) assumed relaxed or

linearized versions of the multi-robot problem. A usual

assumption is that the robots operate in a discrete space

where their actions and measurements can also take values

from a finite discrete set of values (Matignon et al., 2012;

Spaan and Vlassis, 2005). The exploitation of the above

assumption can lead to remarkable results in the context of

multi-robot tasks, presenting many real-life applications

(e.g., Capitan et al., 2013). Unfortunately, these strategies

cannot be fully informed by the (usually occurring) contin-

uous field measurements, whereas they can be computa-

tionally intractable for large state systems, e.g., a single

mobile robot operating in the real world often has millions

of possible states (Roy and Thrun, 1999). Other multi-robot

approaches that fall into this class adapt the assumption of

perfect or sufficient knowledge of the dynamics of the

overall multi-robot system, i.e., the dynamics of each and

every robot along with their interactions with the other

robots and the external environment (Wang and Schwager,

2016; Zhou and Roumeliotis, 2011). In such cases, the

multi-robot problem can be seen to be equivalent to a stan-

dard optimization problem, where the robots’ decision val-

ues are generated according to, e.g., a gradient-descent or

gradient-descent-like algorithm (Nesterov, 2007). However,

the requirement for perfect or sufficient knowledge of the

overall dynamics renders the overall control design practi-

cally infeasible in many multi-robot applications, as they

typically involve a large number of controllable variables

with highly complex and uncertain dynamics (Chen et al.,

2015; Gomes et al., 2013; Morgan et al., 2016).

Another well-investigated class of multi-robot

approaches is the optimal one-step-ahead methodologies.

In this family of approaches, the next robots’ decision vari-

ables are chosen greedily, so as to optimize an appropri-

ately defined cost function that is related to the problem in

hand. For instance, in the domain of multi-robot explora-

tion, a common practice is to choose the next robots’ posi-

tions that maximize the expected information gain

(Burgard et al., 2005; Rooker and Birk, 2007; Stachniss

and Burgard, 2003) or minimize the trace of the extended

Kalman filter (EKF) error covariance matrix (Bourgault

et al., 2002; Cui et al., 2016). Although, many of these

approaches have been successfully evaluated in real-life

multi-robot platforms, the majority of them suffer from the

following drawbacks. First and foremost, the nonlinearities

may give rise to undesirable divergence (such as in cases

where the noise does not follow the additive white

Gaussian noise (AWGN) model). For example, it is usually

considered that a robot can accurately estimate the position

of an object or a point in the environment (landmark/cell)

as soon as it perceives it. In most of the existing optimal

one-step-ahead approaches, this assumption allows in each

timestamp the a priori calculation of the cost function, as

well as the robots’ decision variables that greedily optimize

such a cost function. Moreover, such an assumption is cru-

cial for overcoming deadlocks (local minima), which are

frequently encountered when greedy approaches are

employed (Palacios-Gasos et al., 2016; Rathnam and Birk,

2013). Finally, the selection of an adequate cost function

that provides an efficient solution to the multi-robot prob-

lem is not always trivial.

On the other side of the spectrum are the simulation-

based multi-robot methodologies (Kapoutsis et al., 2015b;

Kohl and Stone, 2004; Kollar and Roy, 2008b). The idea

behind these approaches is as follows. First, a parametrized

decision-making mechanism is devised for generating the

robot decisions online, with different choices for its para-

meters, leading to different decision-making mechanisms.

Then, realistic simulations or similar tools are used in order

to optimize the parameters of the decision-making mechan-

ism. Thus, conceptually, many of the optimization compu-

tations that otherwise would take place on the real devices

are ‘‘moved’’ offline. The drawbacks of such approaches

are as follows: first, the simulations need to cover a wide

range of different realistic scenarios (and, thus, they may

become ‘‘expensive’’); and second, because the dimension-

ality of the optimization problem is quite high, large num-

bers of parameters are needed in order to come up with an

efficient decision-making mechanism.

We close this subsection by mentioning that for most of

the centralized approaches, in all three classes, it is not

clear how they can be extended to have a distributed

nature. Furthermore, the majority of the distributed multi-

robot algorithms (e.g., Morgan et al., 2016; Palacios-Gasos

et al., 2016; Rathnam and Birk, 2013) exploit application-

specific dynamics, therefore their solutions cannot be gen-

eralized to a broader context. In other words, if the problem

objectives or the dynamics are changed, most of the exist-

ing approaches must be redesigned from scratch to ade-

quately tackle the altered problem.

1.2. Contributions

To overcome the aforementioned problems, we propose a

new resource optimization algorithm, specifically tailored

to the context of multi-robot applications, that extends the

cognitive-based adaptive optimization (CAO) algorithm

(Kosmatopoulos, 2009). CAO was originally developed

and analyzed for the optimization of functions for which an

explicit form is unknown but their measurements are
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available, as well as for the adaptive fine-tuning of large-

scale nonlinear control systems (Kosmatopoulos and

Kouvelas, 2009; Kouvelas et al., 2011).

In a nutshell, an update cycle on decision variables of

the proposed algorithm consists of the following steps.

Initially, the robots’ measurements are gathered in a central

node (robot or base station) where the calculation of the

global objective function takes place. In the following, each

robot’s contribution to the cost function is approximated

and forwarded to the corresponding robot. In a fully distrib-

uted fashion, each robot constructs a linear-in-the-para-

meters (LIP) estimator to approximate the (unknown,

problem-dependent) evolution of its subcost function.

Then, each robot generates random (or pseudo-random)

perturbations around its current state and neglects those that

violate the operational constraints (if any). Finally, the next

robot’s action is the one valid perturbation that achieves the

best score on the previously constructed estimator.

The proposed algorithm deviates from the original ver-

sion of CAO in its distributed nature. More precisely,

although each robot does not know explicitly either the

decision variables of the other robots nor of their measure-

ments, it is able to update its own decision variables effec-

tively in a way to cooperatively achieve the team objectives.

The latter can be achieved through a cost function that is

exclusive to each robot, designed so as to encapsulate not

only the mission objectives but also the other robots’

dynamics (‘‘data-driven gradient descent’’ approach: for

more details see Section 3). Rigorous arguments establish

that despite the fact that the dynamics that govern the multi-

robot system are unknown, the proposed methodology

shares the same convergence characteristics as those of

block coordinate descent algorithms (Wright, 2015). As

exhibited in the presented applications, the distributed

nature of the proposed algorithm also allows rapid conver-

gence, especially in cases with many robots.

The contributions with respect to the multi-robot

approaches as presented in the previous subsection are as

follows.

(i) The problem is formulated in a continuous domain

without the need to either know all the states and mea-

surements beforehand, or to perform a relaxation on

the original multi-robot problem (optimal control and

dynamic programming approaches). The ability to

cope with unknown dynamics (robots–environment)

and unknown cost functions imparts a generality to

the proposed algorithm, regarding the spectrum of

applications that can be utilized.

(ii) However, the main advantage of the proposed algo-

rithm is that it does not require either a priori calcula-

tion of the cost function (optimal one-step-ahead

approaches) or the analytical form of the system to be

optimized to be explicitly known (optimal control and

dynamic programming approaches). Instead, the pro-

posed algorithm can cope with cost functions whose

calculation can only be achieved by actually

performing the corresponding course of actions.

Along the same lines, the proposed algorithm does

not require evaluation of the decision variables in the

vicinity of their current values for calculating their

corresponding updates. Instead, the proposed algo-

rithm is able to find the (locally) optimal configura-

tion for the decision variables by using only noise-

corrupted measurements collected from the robots’

sensors.

(iii) Furthermore, instead of relying on exhaustive, compu-

tationally intensive simulations (simulation-based

approaches), the proposed scheme is able to online

learn the problem-specific characteristics that affect

the user-defined objectives. By doing so, the proposed

algorithm does not need any elaborate model in order

to learn its decision-making mechanism.

It must be emphasized that apart from rendering the

optimization problem practically solvable, the proposed

approach preserves additional features that make it particu-

larly tractable:

(i) its complexity is low, allowing real-time

implementations;

(ii) it can handle a variety of physical constraints;

(iii) it has fault-tolerant characteristics, i.e., online rede-

sign in case one or more robots being added or

removed, an extra task being added to the set of

objectives, etc.;

(iv) it is able to adapt its behavior even in cases where a

time-varying objective function is employed.
1

1.3. Simulation testbeds

The proposed control strategy is evaluated on three different

simulation set-ups under multiple scenarios, against both

general-purpose and problem-specific algorithms. All the

simulation set-ups have been chosen so that: (i) the objec-

tive of the multi-robot mission can be expressed as a cost

function, and (ii) the evaluation of which cannot be per-

formed beforehand.

In the first simulation set-up, the objective is to spread

out the robots over a 2D environment while aggregating in

areas of high sensory interest. An important aspect of the

set-up is that the robots are not aware beforehand of the

sensory areas of interest - instead, they learn this informa-

tion online via sensor measurements from their current

positions. The proposed algorithm is evaluated together

with the approach proposed by Schwager et al. (2009) for

the problem in hand.

In the second simulation set-up, the trajectories of the

robots should be designed in real-time having a twofold

objective (which forms a trade-off). On the one hand, the

part of the 3D terrain that is monitored (i.e., visible) by the

robots has to be maximized and, on the other hand, for each

one of these visible points in the terrain, the closest robot

has to be as close as possible to that point. This problem

Kapoutsis et al. 815



along with a centralized CAO-based methodology has been

proposed by Renzaglia et al. (2012), therefore a detailed

analysis regarding the performance of both algorithms, in

different scenarios, is presented.

Last but not least, the proposed methodology is evalu-

ated in the task of persistent coverage. The objective of this

application is to maintain a user-defined level of coverage

in an unknown environment (Palacios-Gasós et al., 2016).

This is a quite challenging task as the mission objectives

constantly change, whereas the unknown morphology of

the environment does not allow the prior calculation of the

improvement in the coverage task.

Conclusively, if it is possible to define a cost function

which encapsulates the mission objectives and can be cal-

culated through the robots’ measurements for every deci-

sion variables configuration, the proposed methodology

will be directly applicable to the corresponding problem.

1.4. Paper structure

The remainder of the paper is structured as follows. Section

2 presents the translation of a general-purpose multi-robot

framework to a constrained optimization problem, high-

lighting the difficulties and the obstacles of the general

problem. The description of the proposed algorithm, which

tackles such a problem, is presented in Section 3. Sections

4, 5, and 6 present three indicative multi-robot applications:

adaptive coverage of unknown 2D environment, 3D surveil-

lance of unmapped terrains, and persistent coverage of

unknown 2D environments, respectively. In all these sec-

tions, we perform a series of simulations in different scenar-

ios to adequately analyze the performance of the proposed

algorithm. The overall conclusions of the paper are drawn

in Section 7.

2. Problem formulation

Consider a team (swarm) that consists of N robots interact-

ing with each other, towards achieving a global set of objec-

tives. Let us assume the following augmented decision

vector

x(k)[ xt
1(k), xt

2(k), . . . , xt
N (k)

� �t ð1Þ

where xi(k) 2 R
n denotes the decision variables of the i th

robot at the k th iteration. These decision variables represent

the controllable parameters of the available robots (e.g.,

position, motors, propellers, thrusters, rotation of the cam-

eras, etc.). Furthermore, the augmented vector which con-

tains the available exteroceptive measurements takes the

form

y(k)[ yt
1(k), yt

2(k), . . . , yt
N (k)

� �t ð2Þ

where yi(k) 2 R
m denotes the measurement vector of the i

th robot at the k th iteration and its evolution can be repre-

sented as

yi(k)[hi(k, xi(k)) ð3Þ

where hi(�) denotes an unknown, nonlinear function that

depends on both xi(k) and the specific problem characteristics.

The accomplishment of the multi-robot system’s objec-

tives (e.g., mapping, surveillance, etc.) can be translated

into the minimization (or maximization)
2

of a specifically

defined global cost function jk , i.e.,

jk[J x1(k), x2(k), . . . , xN (k)ð Þ ð4Þ

where J ( � ) is a non-negative, nonlinear, scalar function

that depends, apart from the robots decision variables, on

the particular dynamics of the problem (e.g., the environ-

ment where the robots operate). Owing to the dependence

of the function J on the particular problem characteristics,

the explicit form of the function J is not known in practical

scenarios; as a result, standard optimization algorithms

(e.g., gradient descent with an apriori model) are not appli-

cable. However, in most practical cases, the current value

of the objective function can be approximated from the

robots’ measurements,

J x1(k), . . . , xN (k)ð Þ= J y1(k), . . . , yN (k)ð Þ+ jk ð5Þ

where jk denotes the noise introduced in the estimation of

jk , owing to the presence of noise in the robots’ sensors.
3

It

must be emphasized that, in contrast to J , J can be evalu-

ated ‘‘offline,’’ if the measurement vector y(k) is available.

However, the acquisition of a new measurement vector

requires an actual evaluation of the decision variables on

the robotic system (2) and (3).

Apart from the problem of dealing with a criterion for

which an explicit form is not known, but only its noisy

measurements are available at each time, the decision vec-

tor x(k) should satisfy a set of constraints that, in general,

can be represented as follows:

C x(k)ð Þł 0 ð6Þ

where C is a set of nonlinear functions of the decision vari-

ables x(k). As in the case of J , the constraints function C
depends on the particular problem characteristics and an

explicit form of this function may be not known in many

practical set-ups; however, it is natural to assume that the

low-level algorithm is provided with information whether a

particular selection of decision variables x(k) satisfies or

violates the set of constraints (6).

Given the mathematical description presented above, the

problem of choosing the decision variables online for a

multi-robot system, so as to accomplish a set of objectives,

can be mathematically described as the following con-

strained optimization problem:

minimize jk

subject to C x(k)ð Þł 0
ð7Þ

As already noted, the difficulty in solving the con-

strained optimization problem (7) in real time lies in the

816 The International Journal of Robotics Research 38(7)



fact that explicit forms for the function J and C are not

available. Although this is not the only problem, jointly

optimizing a function over multiple robots (N ), each of

which with multiple decision variables (n), can incur exces-

sively high computational cost.

3. Proposed algorithm

Having defined the fundamental aspects that govern a

multi-robot application, we proceed to present the proposed

algorithm for updating the decision variables x(k) so as to

minimize the cost function (4) subject to (6). A high-level

diagram of the proposed algorithm is sketched in Figure 1.

3.1. Global coordination

Step 1. As a first step, and for each iteration k, the robots

transmit the acquired measurements, after the execution of

x(k) decision variables.

It must be emphasized that this step can be performed

even in cases where global communication between all

robots is not feasible. In such a case, each robot can send

and receive measurements to and from peer (adjacent)

robots, until all the measurements aggregate to the corre-

sponding processor unit (robot or ground station). The lat-

ter can be guaranteed by introducing an extra condition on

the constraints set (6), ensuring the connectivity, if applica-

ble to the problem in hand, among the different robots.

Step 2. Thus, the global cost function can be straightfor-

wardly derived from (see (4) and (5))

jk = J (y1(k), . . . , yN (k))

In addition, for each i th robot, calculate the following

discrepancy:

Di(k)[jk � J(y1(k), . . . , yi�1(k), yi(k � 1), yi + 1

(k), . . . , yN (k))
ð8Þ

In other words, Di(k) encapsulates the effect of the xi(k)
on the current problem for the kth timestamp.

Note that, because the last term of (8) is analytically

available, we can calculate this term, although the resulting

value does not necessarily correspond to the actual value

when the robots have the following decision variables:

x1(k), . . . , xi�1(k), xi(k � 1), xi + 1(k), . . . , xN (k)f g

Although there may be a discrepancy between the way we

calculate J (�) and its actual value, that does not affect the

convergence properties of the proposed algorithm. This dis-

crepancy is application oriented and depicts the effect of

other robots’decisions on each robot’s measurements. If the

measurements acquired from a robot only affects its own

decision variables and the problem itself (3), then there is

no discrepancy at all.

Step 3. Next, the calculated discrepancy Di(k) is sent to the

ith robot.

After this step all the calculations are performed locally,

building a system that (i) is resilient to robot failures, (ii)

does not require any global coordination, and (iii) all the

decision variables’ updates are made in a (parallel) distribu-

ted fashion.

3.2. Distributed decision

Each ith robot, at the same kth iteration, performs the

following.

Fig. 1. High-level diagram of the proposed algorithm. At each timestamp, all the operational robots first apply their decision

commands and acquire the corresponding measurements yðkÞ, in order to be able to calculate the global cost function index. Then, the

contribution DiðkÞ of the each robot to overall accomplishment of mission objectives is calculated and sent to the ith robot. In a fully

distributed fashion, each robot constructs a linear-in-the-parameters estimator to approximate the (unknown - problem dependent)

evolution of its sub-cost function JiðkÞ, which encapsulates both the mission objectives and the operational capabilities of the multi-

robot team. Finally, each robot’s next decision vector xiðk þ 1Þ is the one valid perturbation that achieves the best score on the

previously constructed estimator.

Kapoutsis et al. 817



(a) Update Ji(k) that corresponds to the last executed

decision variables xi(k) as

Ji(k)= Ji(k � 1)+ Di(k), 8k ø 1, Ji(0)= j0 ð9Þ

Therefore, each robot is responsible for choosing the

next values for its decision variables xi(k + 1), having

as sole objective the minimization of its corresponding

cost function Ji( � ).
4

Each such subproblem is a lower-

dimensional minimization problem, and thus can typi-

cally be solved more easily than the full problem.

(b) Construct a LIP estimator of Ji(k + 1) as follows:

Ji(k + 1)’Ĵi(k + 1)= ut
i (k)fi(xi(k)) ð10Þ

where fi denotes the nonlinear vector of L regressor

terms, ui denotes the vector of the parameter esti-

mates, and L is a positive user-defined integer which

denotes the size of the function approximator (10).

Defining the vector of regressor terms fi as in

Section 3.3.1, the estimator vector ui can be calcu-

lated using standard least-squares estimator princi-

ples, i.e., ui is obtained by solving the following

optimization problem:

ui(k)= argmin
q

Xk�1

‘= k�T (k)

(qtfi(xi(‘))� Ji(‘+ 1))2 ð11Þ

where T (k) denotes the time window over which the

least-squares estimation is taking place.

(c) Generate (randomly or pseudo-randomly) a set of M

valid candidate perturbations:

dx
(1)
i (k), dx

(2)
i (k), . . . , dx

(M)
i (k)

where dx
(j)
i (k) are vectors of the same dimension as

xi(k) and M is a positive integer that is larger
5

than

2n. A candidate perturbation j is considered valid if
6

C xt
1, . . . , xt

i�1, x
t
i + dx

(j)
i , xt

i + 1, . . . , xt
N

h it� �
ł 0 ð12Þ

The random choice for the candidates is essential and

crucial for the efficiency of the algorithm, as such a

choice guarantees that Ĵi(k + 1) is a reliable and accu-

rate estimate for Ji(k + 1); see Kosmatopoulos (2009)

and Kosmatopoulos and Kouvelas (2009) for more

details.

(d) Estimate the effect of each of the candidate perturba-

tions on the current vector xi(k) by employing the

previously constructed estimator (10) and pick the

candidate perturbation with the ‘‘best’’ effect, i.e.,

choose the vector dx
(j�)
i (k) that satisfies

dx
(j�)
i (k)= argmin

j = 1, ...,M
ut

i (k)fi(xi(k)+ a(k)dx
(j)
i (k))

(e) Update the i th robot decision variables as

xi(k + 1)= xi(k)+ a(k)dx
(j�)
i (k) ð13Þ

where a(k) is a positive function chosen to be either

a constant positive function or a time-descending

function satisfying a(k) . 0,
P‘

k = 0 a(k)= ‘,P‘
k = 0 a(k)2\ ‘. Furthermore, a(k) ł �a 8k, where

�a is a problem-specific constant, correlated with the

robot’s dynamics (e.g., maximum achievable move-

ment in one timestamp) and the objectives of the

multi-robot application.

(f) Finally, by applying the xi(k + 1) decision vector, the

corresponding yi(k + 1) measurements vector will be

acquired. This vector, along with all the measure-

ments from the remaining robots, are utilized in order

to evaluate the k + 1 team configuration (see Step 1

from the previous subsection).

Remark 1. The above distributed update of the decision

variables (Section 3.2) does not need information about

what is happening to the other robots. All the necessary

information has been ‘‘packed’’ to the scalar value Di(k).
At each iteration, each robot attempts to minimize the

objective function Ji(k) by assuming that the other robots’

decision variables are part of the problem to be solved.

Remark 2. The utilization of random perturbations pro-

vides the proposed algorithm with the potential to escape

from local minima. In essence, the random perturbations

inside the distributed decision mechanism (step (c)), could

have a behavior similar to simulated annealing, which has

been proved that under specific conditions can overcome

local minima (Granville et al., 1994) that may arise from

the distributed nature of the algorithm.

3.3. Estimator’s implementation details

This subsection encloses the implementation details of the i

th robot estimator (10), as outlined in step (b) of the distrib-

uted decision-making scheme.

3.3.1. f monomial construction. The vector fi of regres-

sor terms must be chosen so that it satisfies the so-called

Universal Approximation Property (Polycarpou and

Ioannou, 1991), i.e., it must be chosen so that the approxi-

mation accuracy of the constructed approximator (10) is an

increasing function of the approximator’s size L.

Polynomial approximators, radial basis functions, kernel-

based approximators, etc. are known to satisfy such a prop-

erty (Polycarpou and Ioannou, 1991). Experimenting with

different types of fi, in different multi-robot set-ups

(Sections 4–6, Kapoutsis et al. (2013), and Kapoutsis et al.

(2015a)), it was found that it is sufficient to construct a

polynomial estimator as in Algorithm 1.

The tunable parameters of this procedure are the maxi-

mum order of monomials (maxorder) and the correspond-

ing number of monomials per order (L1, L2, . . . , Lmaxorder,
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where L1 + L2 + � � � + Lmaxorder = L� 1 should be hold).

Mathematically speaking, the number of different mono-

mials per order is given by the number of possible combi-

nations with repetitions (multiset coefficient):

n

i

� �� �
=

n + i� 1

i

� �
=

n(n + 1)(n + 2) � � � (n + i� 1)

i!

where
a

b

� �
denotes the binomial coefficient. However,

the summation L1 + L2 + � � � + Lmaxorder may exceed the

number of available monomials L� 1. A usual practice is

to downscale the number of monomials as follows:

Li =
n + i� 1

i

� �
s

� 	
ð14Þ

where ½�� denotes the nearest integer and s denotes the fol-

lowing scaling factor

s =
L� 1

Pmaxorder
i = 1

n + i� 1

i

� �

3.3.2. Solving the least-squares problem. It is worth point-

ing out that although the Ĵi(k + 1) is evolving in a nonlinear

fashion with respect to xi, standard linear regression tech-

niques can be utilized to find ui, as (10) is still linear in the

parameters’ vector. Therefore, the least-square problem as

defined in (11) can be solved by several algorithms (normal

equation, QR decomposition, SVD, etc.). Although, singu-

lar value decomposition (SVD) is more computational

intensive in comparison to other alternatives, we utilize this

approach due to the fact that it is more numerical stable

(e.g., when the problem is ill-conditioned) (Demmel, 1997).

3.4. Convergence analysis

Remark 3. As shown in Kosmatopoulos (2009);

Kosmatopoulos and Kouvelas (2009), the distributed algo-

rithm implemented in each robot (Section 3.2) guarantees

that if M ø 2× dim xið Þ, the vector f satisfies the universal

approximation property and the functions Ji and C are

either continuous or discontinuous with a finite number of

discontinuities, then the update rule of xi (13) is equivalent

to

xi(k + 1)= xi(k)� A(k)rxi
Ji + e(k)

where A(k) is a positive-definite matrix that depends on the

choice of a (see step (e) of the distributed decision-making

scheme) and rxi
Ji denotes the gradient of Ji with respect

to the xi decision variables. In addition, e(k) is a term that

converges exponentially fast to zero with probability one.

In simple words, the analysis of Kosmatopoulos (2009);

Kosmatopoulos and Kouvelas (2009) establishes that the

algorithm will converge to a local minimum of Ji.

The following theorem describes the properties of the

proposed methodology; as the proof of this theorem is

along the same lines as in Bertsekas (1999: Proposition

2.7.1), only a sketch of proof is provided.

Theorem 1. The local convergence of the proposed algo-

rithm can be guaranteed in the general case where the glo-

bal cost function J and each robot’s contribution Ji are

non-convex, non-smooth functions.

Sketch of the proof: By using Remark 3 (projected gra-

dient-descent on the minimization of Ji) and Equations (8)–

(9), we can establish that the distributed update on each

robot is equivalent to

xi = argmin
w

J x1, . . . , xi�1,w, xi + 1, . . . , xNð Þ

subject to (12) and, therefore, the proposed algorithm

approximates the behavior of the block coordinate descent

(BCD) (Wright, 2015: Algorithm 1) family of approaches.

Following the proof described in Bertsekas (1999:

Proposition 2.7.1), it is straightforward to see that if the

minimum with respect to each block of variables is unique,

then any accumulation point of the sequence fx(k)g gener-

ated by the BCD methodology is also a stationary point.
7

3.5. Complexity

The computational burden regarding the global coordina-

tion (section 3.1) is accumulated in the calculation of Di(k)
(8) for each robot i. However, the calculation of J �ð Þ is

problem-dependent, thus, it is not possible to analytically

derive bounds regarding its complexity. In the reported

cases (cost functions (19), (21), (23), and (27)), as well as

in most real-world applications, the computational needs of

J �ð Þ grow, at most, quadratic with the number of robots ×
the number of measurements per robot, i.e., O N 2m2ð Þ.
Technically, the above threshold expresses the case where

an operation is needed per different pair of measurements

fy(i)a , y
(j)
b g, with a, b 2 f1, . . . ,mg and i, j 2 f1, . . . ,Ng.

Overall, J �ð Þ is evaluated N + 1 times, one for each robot

and one for the global cost function term (8); therefore,

Steps 1–3 are expected to have O N 3m2ð Þ.

Algorithm 1. fi construction

Input: maxorder, L1, L2, . . . , Lmaxorder, xi, n
Output: fi

1: fi = 1
2: for j 2 f1, . . . , maxorderg do
3: for v 2 f1, . . . , Ljg do
4: g = 1
5: for l 2 f1, . . . , jg do
6: Generate r : = random integer 2 f1, . . . , ng
7: g = g � x(r)i

8: end for
9: fi = ft

i , g
� �t

10: end for
11: end for
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The computational requirements for the distributed deci-

sion (Section 3.2), which is computed on each robot, are

dominated by the requirement of solving the least-squares

problem (11). According to Golub and Van Loan (2012:

Section 5.5.6, Figure 5.5.1), the best algorithms for least-

squares problem using SVD procedure, take time that is

proportional to O T 2L + L3ð Þ. In the interest of simplicity,

and owing to the fact that T ’ L, we can assume that the

complexity for the distributed decision scales as O L3ð Þ.
Although, there exist no theoretical results for providing

the lower bound �L for the size of the regressor vector, prac-

tical investigations on many different applications (e.g.,

Amanatiadis et al., 2013; Kapoutsis et al., 2015a; Korkas

et al., 2016) indicate that it is sufficient enough to choose

L ø �L = 2× n, to adequately tackle the local approximation

of Ji. Therefore, it is expected that the computational

requirements will grow with O(n3). Although this step is

executed on each robot (N times), the distributed nature of

the algorithm guarantees that no extra computational needs

will be required.

Overall, it is expected that the complexity of computing

N times the cost function J �ð Þ dominates the requirement

of solving the least-squares problem for one robot. Table 1

summarizes the complexity bounds discussed in this

section.

Remark 4. We close this section by accumulating the free

parameters of the proposed algorithm. The set is composed

of the number of perturbations M , the total number of uti-

lized monomials L, and the time window T over which the

least-squares estimation is taking place. According to

Remark 3, the number of perturbations M should be

greater than 2× n. Furthermore, the complexity analysis of

Section 3.2 indicates that the estimator (10) should have at

least �L = 2× n number of monomials. Finally, T is a non-

negative integer that expresses the desired ‘‘forgetting fac-

tor’’ for the constructed estimator. In the following experi-

mental set-ups, we set the algorithm’s parameters within

these bounds. Alternatively, and if required, all parameters

mentioned could be manually tuned in order to achieve

better, application-dependent, performance.

4. Adaptive coverage control utilizing

Voronoi partitioning

The first simulation set-up is the well-investigated optimal

robots’ placement problem (Cortes et al., 2002; Schwager

et al., 2006, 2009). The objective for the network of robots

is to spread out over an environment, while aggregating in

areas of high sensory interest. Furthermore, the robots do

not know beforehand where the areas of sensory interest

are, but they learn this information online from sensor mea-

surements. The aforementioned task can be found in appli-

cations such as environmental monitoring and clean-up,

automatic surveillance of rooms/buildings/towns, or search-

and-rescue missions.

4.1. Problem definition

It is assumed that the operational area is a bounded

Q � R
n. A point inside this environment is denoted by q

and the decision vector xi for the i th robot contains its

position in Q. In addition, let fV1, . . . ,VNg be the Voronoi

partition of Q, for which the robot positions are the genera-

tor points:

Vi = fq 2 Qj q� xik kł q� xj



 

, 8j 6¼ ig

(Henceforth, we use �k k to denote the Euclidean norm

�k k2). Let z(�) be the unknown sensory function such that

z : Q! R.0 (where R.0 is the set of strictly positive real

numbers). In other words, this function z(�) assigns in each

location of the available space Q a weight of importance

related to the necessity of being covered.

The global cost function for the problem in hand, admits

the following form:

J (x(k))=
XN

i = 1

Z
Vi

1

2
q� xik k2

z(q)dq ð15Þ

Apparently, the above function cannot be calculated in

advance owing to the dependence of the unknown sensory

function z. Without loss of generality, we assume that the

sensory function is given by

z(q)=K(q)ty +O(1=W ), 8q 2 Q ð16Þ

where K : Q! R
W
.0 denotes a vector of bounded, continu-

ous basis functions (e.g., Gaussians, wavelets, sigmoids,

etc.) and y 2 R
W is the parameter vector. The deviation

from the actual value of z is of the order of the number of

basis functions O(1=W ). Although K is defined a priori,

the mixing parameters vector y is environment-dependent

and generally unknown. However, the value of the sensory

function can be measured from the robots’ sensors (e.g.,

temperature/chemical sensor) at their current position’s con-

figuration x(k):

y(xi)= z(xi) ð17Þ

The value of the parameter estimation vector ŷ can be

approximated through these measurements, utilizing

standard parameter estimation techniques (e.g., least-

squares approach (11)). Therefore, after the update on

the parameter vector ŷ, a new update on the belief

regarding the sensory function is also available through

the equation

Table 1. Complexity analysis.

Step Complexity Practical Comments

1–3 O J yð Þð Þ O N3m2ð Þ Application
dependent

4 O L3ð Þ O(n3) Least-squares
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ẑ =Ktŷ ð18Þ

Hence, the value of the unknown cost function can be

approximated through the following equation:

J (y(k))=
XN

i = 1

Z
Vi

1

2
q� xik k2Kt(q)ŷ dq ð19Þ

4.2. Simulation results

For implementation reasons, we assume that the operation

area consists of 225 discrete points, uniformly distributed

across the plane of ½0, 1�2. The sensory function, z(q), was

parameterized as a linear combination of 49 Gaussians, i.e.,

K(j)= 1
2ps2

j

exp� (q�mj)
2

2s2
j

, 8j 2 f1, . . . , 49g. Each standard

deviation is set to be sj = 0:02 and the Gaussians centers

mj are chosen so as to be uniformly distributed in the

operational area (seven Gaussians in each row and col-

umn). The parameter y ¼ ½y1; y2; . . . ; y49�t was chosen so

that yi ¼ 0:1; 8i 2 f1; . . . ; 49g, apart from two random

integers a; b 2 f1; . . . ; 49g whereas ya ¼ yb ¼ 100. In

other words, for each simulation instance, the sensory func-

tion z(q) was dominated by two, randomly selected,

Gaussians. Finally, the equations are integrated using a

fixed step of a = dt = 0:01 and the initial values for the

estimation of parameter vector (robots’ knowledge) was

chosen to be ŷ = ½0:1, 0:1, . . . , 0:1�t.

In addition, with the proposed approach, we present

simulation results from the algorithm as proposed, for the

problem in hand, by Schwager et al. (2009). The weights’

selection was undertaken following the authors’ instruc-

tions in Schwager et al. (2009: Section 7.2). To construct

comparable simulations instances, we utilize the same

learning rule for the parameter vector ŷ (Schwager et al.,

2009: equation (13)). In both the evaluated algorithms, the

update of parameter vector was performed, by aggregating

all the robots’ measurements. To evaluate the performance

of each approach in each timestamp, we also calculate the

real value of the cost function (15), but none of the evalu-

ated algorithms utilizes this information.

The proposed approach was employed with a constant

time window for the least-squares estimation of T = 30 and

the number random perturbations was set to M = 100. To

approximate each robot’s cost function evolution, we utilize

a third-order monomial estimator with L = 10 and using

(14) we calculate the number of monomials per order to be

L1 = 2, L2 = 3, and L3 = 4.

4.2.1. Random initial positions scenario. In the first simu-

lation scenario, the robots were placed randomly along the

x and y axes of the operation area. An example of this simu-

lation set-up is illustrated Figure 2, where Figure 2(a)

sketches the Voronoi partitioning for the initial robot con-

figuration, Figure 2(b) illustrates the robots’ trajectories

from their initial positions (squares) to the final configura-

tion (circles), and, finally, Figure 2(c) illustrates the Voronoi

partitioning for the final robots’ positions. As one can see,

the robots gathered around the areas with the highest values

of the unknown sensory function z( � ).
Figure 3 presents a comparison study between the evalu-

ated algorithms, over different sizes of robot teams. The

number of robots was chosen to be 10, 15, 20, and 25

robots, and for each configuration 60 experiments with ran-

domly selected initial robots’ placement and sensory func-

tion were performed. The average, final achieved cost

function (15) values, along with the corresponding confi-

dence intervals are illustrated in Figure 3(a). In addition,

we present the summation of the cost function over the

course of each simulation pair (Figure 3(b)). It must be

emphasized that, although the summation of the cost func-

tion may be strongly dependent on the initial robots’ posi-

tions the final achieved value has a small variance around

the average value. This feature highlights the ability of the

proposed approach to converge to an optimal configura-

tion, independently of the initial conditions.

4.2.2. Right half-plane scenario. In the second simulation

scenario, the robots’ initial positions were constrained inside

the right half-plane of the operation area. In general, this

Fig. 2. Illustrative example with random initial positions for the robots. (a) Initial Voronoi partitioning. (b) Robots’ trajectories on top

of the heatmap of the sensory function. The squares and the circles denote the initial and the final positions of the robots, respectively.

(c) Voronoi partitioning of the final configuration. In these figures, we sketch how the proposed algorithm drives the available robots

so as to completely cover the space and to aggregate around areas with high sensory interest.

Kapoutsis et al. 821



scenario has a greater level of difficulty, compared with ran-

dom initialization, as the robots can easily get stuck in highly

suboptimal situations. Figure 4 illustrates an instance of such a

scenario where the proposed approach was utilized.

As in the previous scenario, we present a comparison

between the evaluated algorithms for different sizes of robot

teams. The results are illustrated in Figure 5. Again, the

proposed approach utilizes all the available team resources

in order to achieve optimal robot configurations with small

variance around the average values.

5. Three-dimensional surveillance of unknown

areas

A more elaborate variation of the previously described set-

up has been proposed by Renzaglia et al. (2012) and

applied in several domains (e.g., Kapoutsis et al., 2015a;

Scaramuzza et al., 2014). Although the problem is again

the optimal placement of robots in real time, the details of

the simulation set-up are important. First and foremost, the

robots are moving inside a 3D space (e.g., unmanned aerial

vehicles). The terrain to be covered is considered an

unknown, non-convex, 3D surface the formation of which

may form an arbitrary number and shape of obstacles.

Furthermore, a realistic model for the robots’ sensors is

employed and utilized in all the simulation scenarios.

5.1. Problem definition

In this simulation testbed, the decision variables (1) repre-

sent the positions of the robots in 3D space, i.e.,

x= xt
1, . . . , xt

N

� �t
, where xi 2 R

3. It is assumed that the

area to be monitored is constrained within a rectangle in

the (x, y) coordinates as

U = fx, yjx 2 ½xmin, xmax�, y 2 ½ymin, ymax�g

where xmin, xmax, ymin, ymax are real numbers that define the

‘‘borders’’ of the area of interest. Using the definition of U,

the area can be defined as a function that maps each point

(x, y) 2 U to a point z = z(x, y) (height of unknown terrain

at (x, y)). A point q = (x, y, z) of the terrain is visible if there

exists at least one robot so that:

� the robot xi and the point q are connected by line of

sight;
� xi � qk kł thres , where thres defines the maximum

distance the i th robot can ‘‘see.’’

Given the robot configuration x(k) at timestamp k, we let

V denote the visible area of the terrain, i.e., V consists of all

points q 2 U that are visible from the robots.

Furthermore, the measurements’ model for all the robots

admits the following form:

yxi�q =
xi � qk k+ hj(xi, q)j if q 2 V
undefined otherwise

�
8q ð20Þ

where hj(xi, q) is the multiplicative sensor noise term

(e:g:,} xi � qk k2) and j is a standard Gaussian noise. The

above nonlinear noise model is a realistic representation of

the noise effect in many real robotic systems; see

Salavasidis et al. (2016) and Teixeira (2007: Chapters 3

and 4). For instance, in the case of sonar or cameras, the

noise affecting such sensors is proportional to the sensor-

to-sensing-point distance, i.e., the larger the robot-to-

sensing point distance, the larger the sensor noise

(Scaramuzza et al., 2014).

Having the above formulation in mind, we define the

following combined cost function that the team of robots

has to minimize

J (y(k))=

Z
q2V

min
i = 1, ...,N

yxi�q dq + K

Z
q2UnV

dq ð21Þ

The fist term is equivalent to the cost function consid-

ered in many coverage problems for known 2D environ-

ments (Choset, 2001; Cortes et al., 2002). The second term

of (21) is related to the invisible area in the terrain. The pos-

itive constant K serves as a weight for giving less or more

priority to one of the objectives.

Moreover, the set of nonlinear constraints (6), which

must be held for each new robots’ configuration x(k),
include the following:

� the robots remain within the terrain’s limits, i.e., within

½xmin, xmax� and ½ymin, ymax� in the x and y axes,

respectively;

Fig. 3. Comparison study for the random initial positions scenario: proposed algorithm (blue) and approach presented by Schwager

et al. (2009) (red). (a) Final achieved value of the cost function. (b) Summation of the cost function over the experiment’s horizon.
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� the robots satisfy a maximum height requirement, while

they do not hit the terrain, i.e., they remain within

½z + dh, zmax� along the z axis, where dh denotes the

minimum safety distance the robots should always have

from the terrain and zmax denotes the maximum allow-

able operational height for the robots;
� xi � xj



 

ø dr, 8i, j 2 f1, . . . ,Ng and i 6¼ j, i.e., the

safety distance between two robots is dr.

5.2. Simulation results

The centralized CAO-based approach that has been pro-

posed for the problem in hand (Renzaglia et al., 2012) is

utilized for comparison purposes. The proposed approach

was parametrized with a time window T = 40 for the least-

squares estimation, with M = 100 random perturbations,

the corresponding approximator was a third-order mono-

mial estimator with L = 18, and the number of monomials

per order (14) were L1 = 2, L2 = 5, and L3 = 10.

Acknowledging the fact that the CAO algorithm performs

optimization in a higher-dimensional space (centralized

optimization scheme), a different set of parameters was

chosen. Evaluating the CAO version for different numbers

of random perturbations, we found that after M = 900 the

number of random perturbations does not affect its perfor-

mance. Furthermore, to cope with the higher-dimensional

state space, the time window was set to T = 60 and the

approximator was chosen to be a third-order monomial

estimator with L1 = 3, L2 = 12, and L3 = 40 (with overall

size of L = 56). In both algorithms, we utilize a = 0:1 to

update the robot’s positions. For the rest of this section, we

use these values in all the presented experiments.

To perform simulations in a realistic environment, we

utilized the morphology of an area located in Zürich,

Switzerland (Figure 6(a)). This map was generated using a

state-of-the-art visual-SLAM algorithm (Doitsidis et al.,

2012), which tracks the pose of the camera while, simulta-

neously and autonomously, building an incremental map of

the surrounding environment. The terrain’s dimension is

[0,162] m and [0, 84] m for x and y axes, respectively,

while the height of the terrain is between ½0, 7:2� m and the

maximum operational height was set to 25 m. Following

the authors instructions (Renzaglia et al., 2012), K weight

(21) was chosen to be 30, whereas both the safety distance

from the terrain and the minimum allowable distance

between two robots were set to be dh = dr = 0:5 m. Finally,

the duration of each experiment was set to kmax = 600

timestamps.

Figure 6 depicts such a simulation instance with six

robots. The initial positions of the robots, as sketched in

Figure 6(b), were selected to be ‘‘crowded’’ inside a sub-

area of the terrain. Figures 6(c) and 6(d) illustrate the final

Fig. 4. Illustrative example where the robots initial positions are constrained inside the right half-plane of the operational

environment. The proposed algorithm navigates the robots around the space, utilizing only their measurements on their current

positions, to achieve the mission objective. (a) Initial Voronoi partitioning. (b) Robots’ trajectories on top of the heatmap of the

sensory function. The squares and the circles denote the initial and the final positions of the robots, respectively. (c) Voronoi

partitioning of the final configuration.

Fig. 5. Comparison study for the right half-plane scenario: proposed algorithm (blue) and approach presented by Schwager et al.

(2009) (red). (a) Final achieved value of the cost function. (b) Summation of the cost function over the experiment’s horizon.
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robots’ configuration, as calculated by the CAO-based

algorithm in 3D and 2D representation, respectively. The

corresponding final robots’ assignment as calculated by the

proposed approach is presented in Figures 6(e) and 6(f). In

both cases, the 3D representation reports which subarea of

the terrain is covered by each robot, whereas the 2D repre-

sentation reveals the exact positions of the robots in the x–

y plane and the distance between them. Figure 6(g) depicts

the evolution of the cost function (21) for both the evalu-

ated algorithms. Apart from the difference in the conver-

gent state, the proposed approach is able to find this

solution from its early steps (\50). The centralized CAO

needs more iterations to learn the dynamics of the robots

and the unknown terrain, because it performs its optimiza-

tion scheme in the higher-dimensional space of R
3N (R18

for 6 robots). In contrast, the proposed algorithm sepa-

rately, although cooperatively, solves N (=6 robots for this

instance) optimization problems of the size of R3.

In the specific problem set-up, the speed of convergence

requires extra attention, as a slow convergence rate may

lead to instability or loss of convergence at all. More specif-

ically, if a navigation algorithm does not converge fast

enough to the optimal configuration, one or more robots

may have reached high-altitude positions, from which they

cannot acquire useful measurements (out of their sensor

capabilities (20)). This is a non-recoverable situation, as the

robots do not have any ‘‘feedback’’ from the terrain to prop-

erly evaluate their actions.

5.2.1. Scalability analysis. To validate both the efficiency

and the effectiveness of the proposed algorithm in the case

of larger robot teams, we performed experiments with 5,

10, 15, and 20 robots.
8

For each different size of robotic

team, we created 20 experiment instances with randomly

chosen initial robots’ positions. The aforementioned simu-

lation instances are evaluated on both the proposed

approach and the centralized CAO-based approach.

The results of these simulations are summarized in

Figure 7. Figure 7(a) displays the average value of the

resulting cost function J (kmax), along with the correspond-

ing confidence interval, over the different number of robots.

In addition, Figure 7(b) displays a statistical analysis on the

summation of cost function
Pkmax

0 J (k), to investigate the

convergence rate of each pair (scenario–algorithm).

Overall, the proposed approach achieves an average

improvement of 23% on the final achieved cost function

value, with 55:33% improvement on the deviation around

that average value. Moreover, the summation of cost func-

tion has been improved by 23:84% with a corresponding

improvement on the deviation of 65:06%, against the cen-

tralized CAO-based approach. The proposed approach

achieves these performance enhancements mainly due to

the two following reasons.

(i) The proposed algorithm has a better perspective on

the change of the overall cost function by evaluating

the appropriate combinations of historical measure-

ments on that cost function (Steps 2–3 of the proposed

approach).

(ii) The fast convergence of the proposed approach elimi-

nates the chances for a robot to be found out of its sen-

sors capabilities. Therefore, the proposed approach is

able to converge on approximately the same robots’

configuration (per different team size), independently

on the robots’ initial positions. The latter is depicted in

the substantial improvements on the corresponding

confidence intervals.

5.2.2. Fault-tolerant characteristics. In this scenario, we

investigate the performance of the proposed algorithm in

the case of catastrophic events or hardware failures. More

precisely, five robots were initially deployed to perform the

aforementioned coverage task, whereas the duration of the

experiment was increased to kmax = 1, 000 timestamps. It is

assumed that, at timestamp 330, one robot did not corre-

spond to our control commands and the measurements’

flow had been interrupted. Under these new circumstances,

the surveillance task has to be undertaken by remaining,

properly working robots. After the completion of two-thirds

of the available timestamps, we assume that another robot

had an equipment malfunction and cannot continue its cov-

ering task. Thus, the number of available robots, which are

called to cover the area of interest for the ; 300 remaining

timestamps, has dropped to three.

Figures 8(a)–8(f) illustrate the evolution of the robots

positions during the course of the previously described sce-

nario, utilizing the proposed approach. After both the

robots’ malfunctions, the algorithm redesigns the remain-

ing robot positions to achieve the best possible coverage.

Overall, Figure 8(g) demonstrates the evolution of the

objective function for the proposed approach in comparison

with the centralized CAO-based approach (Renzaglia et al.,

2012).

It must be emphasized that the proposed algorithm does

not need any separately designed, fault-detection mechan-

ism (e.g., failure in establishing communication, operator to

detect the malfunction, etc.), as it is able to implicitly derive

this kind of information from the changes in the cost func-

tion J with respect to the commanded positions. The above

feature is of paramount importance in real-life multi-robot

applications, because it removes the tedious, and in many

applications impossible, task to predict (or identify online)

all the possible malfunctions, as well as to design the appro-

priate course of actions.

5.2.3 Target monitoring. We close this section by investi-

gating the algorithm’s capability to process objectives that

can be alternated/activated on the fly, without stopping and

restarting the mission. To achieve this, simultaneously with

the coverage task, we introduce the task of monitoring a

target. For the sake of this simulation set-up, it is assumed

that, in addition to the sensors which are responsible for

824 The International Journal of Robotics Research 38(7)



Fig. 6. Indicative example: surveillance of unknown terrain by a team of robots: (a) 3D representation of the surface to be covered;

(b) initial positions of the available robots; (c) 3D view, CAO-based approach; (d) top view, CAO-based approach; (e) 3D view,

proposed approach; (f) top view, proposed approach; (g) cost function evolution. The proposed algorithm and the CAO-based

approach (Renzaglia et al., 2012) are evaluated on the same set-up (environment, robots initial positions, robots sensor capabilities).

Fig. 7. Comparison study over different numbers of robots: proposed algorithm (blue) and CAO-based approach (Renzaglia et al.,

2012) (red). (a) Final achieved value of the cost function. (b) Summation of the cost function over the experiment’s horizon.
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the coverage task (20), the robots are equipped with extero-

ceptive sensors (e.g., cameras, sonars, etc.) which are able

to estimate the targets’ positions, according to the follow-

ing measurement model:

yxi�xj
=

xi � xj



 

+ hj(xi, xj)j if xj has been detected

undefined otherwise

�

ð22Þ

where xj denotes the jth target’s position in 3D space,

hj(xi, xt) and j, similar to Equation (20), denote the

multiplicative sensor noise term and the standard Gaussian

noise, respectively. Therefore, an extra term has to be added

to the cost function (21) to appropriately evaluate the prog-

ress of targets’ monitoring, as follows:

J (y(k))=

Z
q2V

min
i = 1, ...,N

yxi�q dq + K

Z
q2UnV

dq

+ Kt

Xnt

j = 1

min
i = 1, ...,N

yxi�xj

ð23Þ

Fig. 8. Malfunction scenario: five robots were initially deployed for the surveillance task. At two distinct timestamps, the swarm of

robots loses one of its member due to a simulated malfunction. The surveillance task have to be continued with the remaining team

resources. (a) Initial positions of the five available robots. (b) Coverage task with all five available robots. (c) One timestamp after the

malfunction on the red robot. (d) Coverage task with four robots. (e) One timestamp after the malfunction on the yellow robot. (f)

Again, the algorithm redesigns the robots positions to cover the area in the best possible way utilizing the available resources. (g) Cost

function evolution.

826 The International Journal of Robotics Research 38(7)



where Kt serves as a weight to give more or less priority to

the monitoring task in comparison with the coverage. In

addition, nt denotes the number of targets to be monitored.

The experiments were performed in the same terrain,

under the previously defined set-up parameters. Figure 9

illustrates four key snapshots, which demonstrate the func-

tionality of the proposed algorithm. Figure 9(a) depicts the

robots’ initial positions along with the corresponding cover-

age on the terrain. After 367 timestamps (Figure 9(b)), the

algorithm has converged to the (locally) optimal robots’

configuration for the coverage-only problem. At k = 370

timestamp, it is assumed that a target, which requires closer

examination, appears inside the operation area. The pro-

posed algorithm, after the time needed to learn the changed

problem dynamics (activation of the third term in (23)),

starts to adapt the robots’ positions to minimize the updated

cost function (23). More precisely, as illustrated in Figure

9(c), the purple robot (which was, at the time, closer to the

target) starts to gain height to minimize its distance from

the detected target. However, such an action leads to poor

coverage on the subarea underneath that robot. To alleviate

the above undesirable situation, the proposed algorithm

redesigns the remaining robots’ positions so as to achieve

the best coverage of the terrain with the available resources.

The final robots’ positions with the corresponding coverage

of the terrain is sketched in Figure 9(d). The evolution of

the objective function for the proposed approach in compar-

ison with the centralized CAO-based approach is demon-

strated in Figure 10. Conclusively, for this simulation

scenario, the proposed algorithm:

� chooses to assign a robot to be as close as possible to

the target without any explicit command;
� adapts the other robots positions so as to ‘‘fill the hole’’

in the coverage task; and
� achieves almost the same level of terrain coverage with

the centralized CAO-based approach for five robots

(Figure (10), dashed line), whereas one (out of five)

robots is occupied with another task.

6. Persistent coverage inside unknown

environment

In the final application, we focus on the problem of persis-

tent coverage in an area of interest with a team of robots. In

this application, it is assumed that the operational robots

are equipped with the appropriate sensors that are able to

cover a portion of the environment. The objective in a per-

sistent coverage application is to continuously cover an area

of interest, assuming that the coverage level follows a time-

decaying function. The problem along with a specifically

designed algorithm has been proposed in Palacios-Gasós

et al. (2016). The authors also established a well-defined,

heuristic mechanism to online share the coverage evolution

between the robots in a distributed way.

Although the results are remarkable, the proposed

decision-making mechanism in Palacios-Gasós et al. (2016)

utilizes a model that accurately predicts the improvement in

the coverage level with respect to the robots movement

(Palacios-Gasós et al., 2016: Equations (10), (18)–(21)). In

real-world applications, the above assumption does not

always hold, as the increase in coverage level (i) is usually

corrupted by nonlinear noise, (ii) can be affected by envi-

ronmental specific characteristics, such as local morphol-

ogy, obstacles, other robots’ positions, etc., (iii) may follow

a time-varying model (e.g., coverage level deteriorates over

time). To circumvent these difficulties, we propose a varia-

tion of the above problem, where the changes in the level of

coverage cannot be accurately predicted before the action.

The actual information about the exact covered area is only

available after the execution of each corresponding action

through the robot’s measurements. The above formulation

is not only more realistic, as it does not require an exact

model of the environment or robot’s coverage capabilities,

but also more generic, as it does not need to redesign the

approach when robots with different or unknown coverage

models are deployed.

6.1. Problem definition

It is assumed that the operational area is a bounded

Q � R
2, which a team of robots has to persistently cover.

The decision variables (1) represent the collective vector of

all the robots’ positions, i.e., x= xt
1, . . . , xt

N

� �t
, where

xi 2 Q.

Inside the environment there are several positions

q 2 O � Q that cannot be traversed by the robots and addi-

tionally the presence of these obstacles affects each robot’s

coverage distribution. Although the exact positions of the

obstacles are generally unknown, we assume that the robots

are able to sense their presence when they are in close

proximity. The above assumption is in line with the most

commercial robots which are also equipped with proximity

sensors to avoid collisions (e.g., Nieuwenhuisen et al.,

2014). Thus, each robot’s new candidate position xcandi

should verify the following constraint (see Equation (6) of

the general problem formulation):

min
q2O

xcandi � q


 

� 


ø b ð24Þ

where b denotes the safety distance. At each timestamp k,

the overall coverage increase is given by

y(q, k)=
P

i2f1, ...,Ng yi(q, k), 8q 2 Q, where

yi(q, k)=
gi(q, xi) if xi � qk kł rcovi and there is line of sightbetween xi and q

0 otherwise

�
ð25Þ
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Fig. 9. Target monitoring scenario. The robots have been deployed with an extra objective (apart from the surveillance task) to get as

close as possible to a target. The target appears inside the operation area of the robots in the middle of the mission. (a) Timestamp 1:

initial positions of the five available robots. (b) Timestamp 367: coverage task with all five available robots. (c) Timestamp 427: the

purple robot starts to gain height to minimize the distance from the target. As a consequence, it cannot cover adequately its underneath

surface. (d) Timestamp 1,000: finally, the algorithm redesigns the robots positions so as to cover the area in the best possible way

utilizing the available resources.

Fig. 10. Cost function evolution in target monitoring scenario.
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and gi(q, xi) denotes a nonlinear function that models how

the coverage level evolves in the area around the i th robot’s

position. Note, that coverage distribution model gi(q, xi)
may be different for each robot as it expresses the function-

ality of its on-board sensors.

The coverage of the operational area can be modeled by

a time-varying field and, in general, admits the following

form:

Z(q, k)= d(q)Z(q, k � 1)+ y(q, k), 8q 2 Q ð26Þ

In other words, the coverage level decreases to a con-

stant decay gain d(q), with 0\d(q)\1, and increases

according to the y(q, k). The objective of the multi-robot

team is to maintain a desired coverage level,

Z�(q) . 0, 8q 2 Q.

Having the above formulation in mind, we define the

quadratic coverage error the robot team has to minimize

J (k)=

Z
Q

Z�(q)� Z(q, k)ð Þ2 dq ð27Þ

6.2. Simulation results

All simulations were performed in a rectangle environment

consisting of 100× 150 units, with uniformly distributed

decay rate d(q)= 0:995, 8q 2 Q. The desired coverage

level is Z�(q)= 100, 8q 2 Q. The number of robots was

N = 6, whereas their maximum motion is umax = 5. The

coverage increase in open space (obstacle-free), caused by

the robots’ movements, can be simulated by

gi(q, k)=
P

rcov2i

xi � qk k � rcovi

� 
2 ð28Þ

The maximum value is set to P = 17 and the coverage

radius is set to rcovi = 10 units. Please note that this equation

is not utilized during the decision-making process, but it is

only employed to simulate the increase in the area coverage,

with respect to the robot’s movement. Finally, the experi-

ments’duration is set to kmax = 900 timestamps.

To adapt the parameters of the proposed algorithm to

the current application, we have to take into consideration

that the navigation algorithm has to rapidly change its

behavior owing to the time-varying nature of the cost func-

tion. Therefore, the time window for the least-squares esti-

mation was only T = 5 timestamps and the number of

perturbations was M = 100 candidates. To solve the under-

lying least-squares optimization problem (11) with such a

reduced historical values, we utilize only a second-order

monomial estimator with L1 = 2 and L2 = 2 (with overall

size of L = 5). Finally, following also the problem definition

in Palacios-Gasós et al. (2016: Section II.), we utilize a = 1

to update the robot’s positions.

6.2.1. Obstacle-free environment. In the first simulation

scenario, we deploy the team of robots in an obstacle-free

environment. An indicative simulation run of this scenario

is summarized Figure 11. Figures 11(a)–11(c) present

the evolution of the coverage across the environment Q,

for three different timestamps. In addition, Figures 11(d),

11(e), and 11(f) depict the evolution of the average cover-

age level, the corresponding standard deviation, and the

quadratic coverage error for the course of the experiment,

respectively. After the experiment execution, the average

coverage level in all the operational environment Q was 97

with a standard deviation of 21:2 and the corresponding

quadratic coverage error was 6:9× 106.

It should be highlighted that, the objective (27) is a time-

varying function with high rate of change, i.e., the evalua-

tion of (27) may result in significantly different scores for

the same robots positions, even for very close timestamps.

However, the proposed scheme is able to appropriately

tackle the above problem, by constantly learning these cost

function variations with respect to the robots’ positions.

Although the proposed algorithm presents an equivalent

performance compared with the dedicated one (Palacios-

Gasós et al., 2016: Section VI), if the problem is defined

as in this scenario and the coverage evolution with respect

to the robots movement being accurately predicted, a dedi-

cated approach should be preferred to avoid the extra time

due to learning (Equations (10) and (11) of the proposed

algorithm). However, the proposed approach has several

advantages when it is deployed in a real-world environ-

ment, where the evaluation of the coverage increase cannot

be performed beforehand. Such a scenario is presented in

the following paragraph.

6.2.2. Unknown cluttered environment. In the final simula-

tion scenario, we investigate the performance of the pro-

posed approach for the persistent coverage task, when it is

evaluated on an unknown environment with non-convex

obstacles. The obstacles have been created randomly and

do not hold any kind of pattern. The minimum distance

between the obstacles and any robot (24) has been set to

b = 2:5.

Again, an illustrative example is presented in Figure 12.

Following the same presentation policy, Figures 12(a), 12(b),

and 12(c) illustrate the evolution of the of the coverage across

the environment Q, for three different timestamps. Figures

12(d), 12(e), and 12(f) depict the evolution of the average

coverage level, the corresponding standard deviation, and the

quadratic coverage error (27), respectively.

The cost function (27) does not need any adaptation to

this scenario as the coverage values Z(q) that correspond to

obstructed locations q 2 O will remain zero, independently

of their distance from any robot. In other words, the calcula-

tion of (27) does not need the information of the unknown

obstacles, as the robots would never send coverage updates

(25) about the obstacles’ positions. However, to construct

comparable metrics with the previous scenario, we exclude

the values that correspond to obstacles’ locations from the

calculation of the average coverage level (Figure 12(d)).
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After the experiment execution, the average coverage level

inside Q was 90:7 with a standard deviation of 32:1 and the

corresponding quadratic coverage error was 6:6× 106.

Comparing the outcomes of two scenarios side by side,

we can draw the following observations.

� In the cluttered environment scenario, the robots can

more easily get ‘‘trapped’’ in overcovered areas, result-

ing in a higher standard deviation. In other words, when

a robot detects (implicitly from the changes in its corre-

sponding cost function) that its position deteriorates the

coverage level, may have only a small subset of possi-

ble new positions.
� During the course of the experiment in the cluttered envi-

ronment, the obstacles ‘‘blocked’’ a portion of the robots’

coverage capabilities. Therefore, for the cluttered envi-

ronment scenario, the robots achieved a smaller average

coverage level (excluding the obstacles positions).

7. Conclusions

A distributed methodology for dealing with multi-robot

problems, where the mission objectives can be translated

into an optimization of a cost function, has been proposed.

In contrast to the majority of the multi-robot approaches,

where the objectives are accomplished in a cost function

optimization scheme, the proposed approach has been

designed for multi-robot problems where the a priori calcu-

lation of the cost function is not feasible. In a nutshell, the

proposed approach has the following key advantages:

� it does not require any knowledge of the dynamics of

the overall system;
� it can incorporate any kind of operational constraint or

physical limitation;
� it shares the same convergence characteristics as those

of BCD algorithms;
� it has fault-tolerant characteristics;
� it can appropriately tackle time-varying cost functions;
� and it can be realized in embedded systems with limited

power resources.

Conclusively, we expect that many interesting tasks in

mobile robotics can be approached by the proposed

scheme. This is basically due to the fact that the proposed

approach, instead of explicitly solving a particular problem,

Fig. 11. Obstacle-free scenario: the coverage level for three different timestamps ((a) timestamp 1, (b) timestamp 200, and (c)

timestamp 400) and the corresponding performance indices ((d) average coverage level, (e) standard deviation of coverage level, and

(f) cost function, quadratic coverage error).

Fig. 12. Scenario in an unknown environment with non-convex obstacles: the coverage level for three different timestamps ((a)

timestamp 1, (b) timestamp 200, and (c) timestamp 400) and the corresponding performance indices ((d) average coverage level, (e)

standard deviation of coverage level, and (f) cost function, quadratic coverage error).
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which requires prior knowledge of the system dynamics,

learns, from the real-time measurements, exactly the features

of the system which affects the user-defined objectives.

Furthermore, the proposed approach can be appealing in

many real-life application owing to its fault-tolerant charac-

teristics, without an explicitly designed fault-detection

mechanism. All the above issues are considered of para-

mount importance in the emerging field of multi-robot

applications.

As future directions, we are interested in performing an

extensive set of experiments, ideally with a large number

of robots (e.g., a large swarm of femtosatellites (100 g class

spacecraft) (Hadaegh et al., 2016)). In particular, in such a

set-up, it is impossible to explicitly program each and every

robot to perform a subtask, therefore the goal will be to

achieve an abstract set of objectives, which are defined in

the form of cost function optimization. The idea behind the

above formulation is, by excluding the intermediate steps

from the design process, we enrich the multi-robot deci-

sion-making scheme with autonomy, regarding the ‘‘type’’

of converged solutions.
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Notes

1. The rate of change in the objective function should be smaller

than the learning capabilities of the algorithm (see Section 2).

2. Without loss of generality, in the rest of the paper we assume

a minimization problem.

3. Note that although it is natural to assume that the noise

sequence jk is a stochastic zero-mean signal, it is not realistic

to assume that it satisfies the typical AWGN property, even if

the robots sensors do; as J is a nonlinear function of the

robots decision variables and, thus, of the robots sensor mea-

surements (3), the AWGN property is typically lost.

4. In the general case,
PN

i = 1 Ji(k) 6¼ jk and
QN

i = 1

Ji(k) 6¼ jk , 8k.

5. See Kosmatopoulos (2009) for more details about the suffi-

ciency of this condition.

6. The distributed nature of the algorithm may impose a stricter

set of constraints, in comparison with cases where a centra-

lized control is applied.

7. Moreover, recent studies imply that BCD methodologies can

achieve global convergence even in cases where the global

cost function (4) is non-convex but holds some properties.

For example, Xu and Yin (2013) established global conver-

gence of the BCD algorithm in the general case where the

global cost function J and each robot’s contribution Ji are

non-convex functions, but the so-called Kurdyka-qojasiewicz
(KL) property is satisfied.

8. Note that for the current experiment set-up with the previously

defined sensor’s capabilities, the utilization of more than 15

robots cannot significantly affect the coverage task.
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Técnico, Lisboa.

Wang Z and Schwager M (2016) Multi-robot manipulation with-

out communication. In: Distributed Autonomous Robotic Sys-

tems. New York: Springer, pp. 135–149.

Wright SJ (2015) Coordinate descent algorithms. Mathematical

Programming 151(1): 3–34.

Xu Y and Yin W (2013) A block coordinate descent method for

regularized multiconvex optimization with applications to non-

negative tensor factorization and completion. SIAM Journal on

Imaging Sciences 6(3): 1758–1789.

Zheng X, Jain S, Koenig S and Kempe D (2005) Multi-robot for-

est coverage. In: 2005 IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2005 (IROS 2005). IEEE, pp.

3852–3857.

Zhou K and Roumeliotis SI (2011) Multirobot active target track-

ing with combinations of relative observations. IEEE Transac-

tions on Robotics 27(4): 678–695.

832 The International Journal of Robotics Research 38(7)


