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Autonomous Navigation of Teams of Unmanned Aerial or Underwater
Vehicles for Exploration of Unknown Static & Dynamic Environments

A. Ch. Kapoutsis, S. A. Chatzichristo�s, L. Doitsidis, J. Borges de Sousa and E. B. Kosmatopoulos

Abstract— In this paper, we present a new approach that
is able to ef�ciently and fully-autonomously navigate a team
of Unmanned Aerial or Underwater Vehicles (UAUV's) when
deployed in exploration of unknown static and dynamic envi-
ronments towards providing accurate static/dynamic maps of
the environment. Additionally to achieving to ef�ciently and
fully-autonomously navigate the UAUV team, the proposed
approach possesses certain advantages such as its extremely
computational simplicity and scalability, and the fact that it
can very straightforwardly embed and type of physical or other
constraints and limitations (e.g., obstacle avoidance, nonlinear
sensor noise models, localization fading environments, etc).

I. I NTRODUCTION

Typically, when a single Unmanned Aerial or Underwa-
ter Vehicle (UAUV) or a team of UAUVs is deployed to
map (explore) an unknown static or dynamic environment,
the static (landmarks) and/or dynamic (targets) features of
the environment as well as the positions of the UAUVs
themselves are estimated through a so-called Simultaneous
Localization And Mapping and Target Tracking (SLAM-TT)
algorithm, which employs an EKF or similar approach to
simultaneously estimate all the above-mentioned quantities,
see e.g. [1], [2], [3], [4] and the references there in. Over
the past years, very powerful approaches have been devel-
oped that can quite ef�ciently provide the estimates of the
landmarks', targets' and UAUVs' positions, provided that the
trajectories of the UAUVs are ef�ciently designed. However,
ef�cient design of the UAUV trajectories is not trivial: in
most cases anoff-line design of the UAUV trajectories is
performed. Off-line design of the UAUV trajectories is, of
course, by no means a guarantee of performance as the
UAUVs may enter into highly unobservable states, they
may spend “too much time” in areas with no important
information for the exploration task, while they may pass
very fast through very crucial areas for the exploration task,
producing thus a very poor map of these areas, etc.

For this reason, the last few years special attention have
been paid in developing techniques foractive exploration
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(active SLAM-TT), see e.g., [4], [5], [6], [7] and the
references therein: using the information received so far,
the UAUV next positions are designed so they optimize
the mapping information of the SLAM-TT algorithm. One
possible way to attack such a problem is as follows: check
all feasible next UAUV positions (e.g., all next UAUV
positions that do not violate obstacle avoidance, maximum
speed, communication, etc constraints) and �nd the ones
that optimize some information metric that corresponds to
the accuracy of the SLAM-TT algorithm; then, move to
the positions that optimize this information metric, and so
on. Different types of such information metrics have been
proposed, with the most popular being the trace of the EKF
error covariance matrix, see e.g., [4], [5]. In such a case the
UAUVs are moving to the next positions that minimize the
average (expected) EKF estimation error.

There two big issues with the above mentioned approach:
the �rst is scalability, since it is computationally not feasible
to check all possible combinations of next UAUVs positions
(this is practically infeasible even in the single UAUV case).
There are, of course, many different approaches that relax
the computational requirement of checking all possible next
positions at the expense of sacri�cing ef�ciency. However,
even in the unrealistic case where in�nite computing power
would be available, as these algorithms are based on EKF
– which, in turn, is based on linearizing the nonlinear
multi-UAUV/sensor dynamics – the presence of nonlinear
constraints (e.g., for obstacle avoidance or for not leaving a
pre-speci�ed area) may be destructive to the ef�ciency of the
overall active exploration mission. The results of such a case
are depicted in Figure 1: three UAUVs have been deployed
for estimating the location of 30 static landmarks and their
trajectories are designed so they minimize the trace of the
EKF error covariance matrix, while they avoid obstacles
(landmarks) and they remain within the cube[� 1;+ 1]3.
Although, in the time-interval[0;79] the overall algorithm
behaves quite ef�ciently, it starts diverging as soon as the
UAUVs “hit” the boundaries of the area they have to remain
within.

Another class of methodologies for active exploration are
based on optimal control or dynamic programming prin-
ciples, see e.g. [5], [6], [7] and the references there in:
the UAUV trajectories are on-line calculated so that they
optimize the accuracy of the static/dynamic map of the
external environment during the overall mission while they
do not violate the physical and other constraints imposed
by the particular application. As in the previously men-
tioned approaches, the “curse of dimensionality” problem
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(practically infeasible to compute in real-time the opti-
mal UAUVs trajectories) is present there too: calculating
the optimal UAUV trajectories is an NP-complete problem
and, for this reason, relaxations or approximations of the
optimal trajectory computations are required. Despite the
quite successful and promising results of such approaches
in small-scaleapplications or applications where suf�cienta
priori information is provided (e.g., for cases where a single
autonomous vehicle is used or an initial “good” estimate of
the environmental map is provided, etc), their extension to
large-scale real-life applications is still an open issue.

In this paper, we present a new approach that overcomes
the shortcomings of the existing methodologies. There are
two basic attributes that render the proposed approach at-
tractive: its extremely computational simplicity and the fact
that it can straightforwardly incorporate arbitrary constraints
and limitations that are met in real-life applications. The
proposed approach is based on the so-called Cognitive-based
Adaptive Optimization (CAO) algorithm that has been suc-
cessfully implemented in multi-UAUV optimal surveillance
coverage problems [8], [9]. The approach of [8], [9] was
shown to ef�ciently handle arbitrary number of UAUVs and
maps of arbitrary complexity and number of features. As the
proposed in this paper approach is based on the extension of
the approach of [8], [9], it inherits all these nice properties.

II. A UTONOMOUSMULTI -UAUV N AVIGATION FOR

EXPLORATION OF UNKNOWN ENVIRONMENTS

Consider a team ofNR UAUVs moving in a 3D environ-
ment in order to estimate as accurately as possible the 3D
positions of NL static features (landmarks) as well as the
3D positions ofNT moving features (dynamic targets). The
UAUV sensors are equipped proprioceptive measurements
(e.g., from GPS or inertial sensors) to propagate their state
(position and orientation) estimates, and are equipped with
exteroceptive sensors (e.g., laser range �nders, cameras,
sonars, etc) that enable them to measure their distance or
bearing from other robots and landmarks. To simplify our
analysis, we will assume that the position and orientation
(pose) of each UAUV are known with high accuracy within
the global frame of1 reference (e.g., from GPS and IMU
measurements).

Let xL
i andxT

i denote the 3D position of theith landmark
(resp. target),xR

i denote the position or pose of theith UAUV
and

X = [ xL
1; : : : ;xL

NL
;xT

1 ; : : : ;xT
NT

]; XR = [ xR
1 ; : : : ;xR

NR
]

denote the matrices of all features to be estimated and all
UAUVs positions (poses), respectively. Furthermore, letY
denote the vector of all UAUVs' sensor measurements. In
the most general case we have that the sensor measurements

1In other words, we will assume that the UAUVs are perfectly localized
and thus we will deal only with the problem of Simultaneous Mapping
and Target Tracking – (SM-TT). It has to be emphasized that the proposed
approach can be easily extended to deal with the SLAM-TT case, i.e., the
case where simultaneously to estimating the static/dynamic map, the overall
approach estimates the UAUVs poses by combining the proprioceptive and
exteroceptive measurements of the UAUVs.

are related to the matricesX and XR through a nonlinear
function that admits the form

Y = H(X;XR;X)

where H is the nonlinear vector sensor function andX is
the sensor measurement noise vector. Let alsoX̂ denote
the estimate ofX as generated by a standard SLAM-TT
algorithm (e.g., an EKF-based one). Apparently, different
UAUV trajectoriesXR(t) result in different accuracy for the
SLAM-TT algorithm. Theactive explorationproblem is that
of generating on-line the trajectories of the UAUVsXR(t) so
that the estimation accuracy of the SLAM-TT algorithm is
optimized. Additionally to optimizing SLAM-TT accuracy,
the design for exploration using UAUVs will have to take
into account the – sometimes very strict – limitations of
the environment the UAUVs operate on: safe navigation,
nonlinear sensor noise characteristics, and limited visibility
of the UAUVs sensors are some of the limitations that
render multi-UAUV autonomous navigation for exploration
a very challenging task. Below, we list all different major
limitations/challenges that any strategy for such a problem
has to take into account:
(NL-Noise) The typical assumption made in most robotic
applications that the sensor noise is additive Gaussian noise
is very restrictive and not realistic in many UAUV appli-
cations. For instance, in UAUVs sonar- and vision-based
sensors, the sensor noise affect the sensor measurements in a
NonLinearfashion: typically, the noise affecting such sensors
is proportional to the sensor-to-sensing point distance, i.e.,
the larger is the UAUV-to-sensing point distance, the larger
is the sensor noise. As a result, it is more realistic to assume
a multiplicative sensor noise model that takes the form

y = h(x;q)+ hx (x;q)x (1)

where y is the sensor measurement,x;q are the positions
of the UAUV and the sensing point (landmark/target/another
UAUV), respectively,h(x;q) is the sensor model in the noise-
free case,hxi(x;q) is a nonlinear function ofx and q [e.g.,
hx (x;q) is the distance betweenx andq] andx is a standard
Gaussian noise.
(LimVis) In addition to the (NL-Noise) limitation, the UAUV
exteroceptive sensors are of limited visibility. As a result,
additionally to the nonlinear sensor noise assumption (1),
the sensor model for the exteroceptive sensors should be
augmented to count for the limited visibility constraint.
Moreover, the sensor model must be augmented to count for
the case where there is no line-of-sight between the UAUV
and the sensing point (e.g., there is an obstacle in between).
As a result, the actual sensor model becomes:

yx� q =

8
>><

>>:

unde�ned if kx� qk � thres
unde�ned if there is no line-of-

sight betweenx andq
h(x;q)+ hx (x;q)x otherwise

(2)

whereyx� q denotes the sensor measurement from an UAUV
at positionx to a sensing point at positionq, thresdenotes the

1182



Fig. 1. Autonomous exploration by moving towards minimizing the trace of EKF error covariance matrix:NR = 3;NL = 30;NT = 0, by assuming unlimited
visibility, perfect localization and in�nite computing power. The estimation error starts diverging as soon as the UAUVs hit the boundary of the cube
[� 1;+ 1]3 the UAUVs are constrained to remain within.

visibility threshold beyond which the vision or sonar sensor
does not “see” andk � k denotes the Euclidean norm.

(ObsAvoid) As in any real-life robot application, the UAUV
navigation system must make sure that the UAUVs avoid
obstacles as well as they remain within a pre-speci�ed
operational area. Usually, it is realistic to assume that the
UAUVs can detect with accuracy the position of the obstacles
nearby.

(Scalable)Finally, a main issue for any multi-UAUV nav-
igation algorithm for exploration is scalability. Of course,
scalability is an issue in any multi-robot application. In the
case of underwater multi-UAUV applications, the scalability
issue becomes way more signi�cant mainly due to the
limited bandwidth of UAUVs communication systems that
allow only a few hundreds of bits/second to be transmit-
ted/received.

Having all these limitations in mind, we now proceed to
present the proposed methodology.

III. PROBLEM DEFINITION

In order to describe the proposed approach we need some
preliminaries. LetP = f x(i)gNR

i= 1 denote the con�guration2 of
the UAUV team, wherex(i) denotes the position of thei-th
UAUV. We will say that a landmark or a targetq = ( x;y;z)
is visible if there exists at least one UAUV so that

� the UAUV and the pointq are connected by a line-of-
sight;

� the UAUV and the pointq are at a distance smaller
than a given threshold value (de�ned as the maximum
distance the UAUVs' sensor can ”see“).

Given a particular team con�gurationP , we letV denote the
subset of allvisible landmarks and targets, i.e.,V consists of
all landmarks and targetsq that are visible from the UAUVs.

2For simplicity, we will assume that all UAUVs are of �xed and known
orientation. All the results can be easily extended to the case of variable
orientation.

1183



Also, for any landmark or targetq = ( x;y;z), let q̂ denote
its estimate as produced by SLAM-TT. We will say that the
landmark or the targetq is currently accurately-estimated,
if the normed-errorkq � q̂kj is below a certain accuracy
threshold. We will denote withA the set of all landmarks
and targets that are currently accurately-estimated. Please
note that in case a landmark becomes accurately-estimated
then it wil remain accurately-estimated thereafter (i.e., it
remains withinA thereafter); however, this is not true for
a moving target which may belong toA at some point and
then leave this subset later.

By using the above de�nitions, we introduce the follow-
ing3 active exploration cost criterion:

J(P ) =
Z

q2V ;q62A
min

i2f 1;:::;NRg
kx(i) � qk2dq

+ K
Z

q62V [ A
dq (3)

where K is a user-de�ned positive constant. Having the
UAUV team minimizing the above criterion, is equivalent
to have the UAUVs come as close as possible to those
landmarks/targets that are currently visible and have not
been accurately-estimated [�rst term in the RHS of (3)]
and, concurrently moving the UAUVs so that they “see”
those landmarks/targets that are currently not visible and
not accurately-estimated [second term in the RHS of (3)].
In other words, the �rst term is responsible for moving the
UAUVs closer to the landmarks/targets so that they reduce
the sensor noise effect and they can “see them better”, while
the second term is responsible for moving the UAUVs closer
to landmarks/targets that “have not seen before” (or “have
been poorly seen”). The constantK serves as a weight for
giving less or more priority to one of the terms of the RHS
of (3). Please note that if the UAUVs' trajectories achieve
to render the value ofJ zero (or suf�ciently small), then
the overall active exploration mission has been successfully
accomplished provided that the position of all UAUVs is
accurately known.

IV. T HE COGNITIVE-BASED ADAPTIVE OPTIMIZATION

APPROACH

Having de�ned the active exploration criterion, we will
now proceed on presenting the proposed algorithm for
autonomously navigating the UAUVs towards minimizing
such a criterion. The algorithm to be used is based on
the so called Cognitive-based Adaptive Optimization (CAO)
approach originated in the references [10], [11], [12], The
version of the CAO algorithm used within the proposed
approach takes the same form as the one of [8], [9] and

3Please note that the subsetA cannot be calculated in real-life as
its calculation requires knowledge of the true landmark/target positions.
However, in practice the subsetA can be estimated with high accuracy
from e.g., the EKF error covariance matrix (e.g., if all three elements
of the diagonal of the EKF error covariance matrix that correspond to a
particular landmark/target are below a certain accuracy threshold, then this
landmark/target belongs toA ). Similarly the term

R
q62V [ A dq cannot be

computed in practice as this term involves those landmarks/targets that are
invisible. This problem can be overcome by noticing that

R
q62V [ A dq =R

q dq�
R

q2V [ A dq and the integral
R

q dq is constant.

is a an extension of the original CAO version of presented
and analyzed in [11], [12]. The main difference is that the
work of [8], [9] extended the CAO approach of [11], [12] so
that it ef�ciently takes care of the various constraints of the
type (ObsAvoid). Below, we provide the main details of the
CAO algorithm as employed in the framework of the active
exploration problem.

We start by noticing that the active exploration criterion
(3) is a function of the UAUVs positions, i.e.,

Jk = J
�

x(1)
k ; : : : ;x(NR)

k

�
(4)

wherek = 0;1;2; : : : denotes the time-index,Jk denotes the
value of the active exploration criterion at thek-th time-
step,x(1)

k ; : : : ;x(NR)
k denote the position vectors of the UAUVs

1; : : : ;NR, respectively, andJ is a nonlinear function which
depends – apart from the UAUVs positions – on the partic-
ular environment where the UAUVs live (e.g., position of
landmarks/targets).

Due to the dependence of the functionJ on the particular
environment characteristics, theexplicit form of the function
J is not knownin practical situations; as a result, standard
optimization algorithms (e.g., steepest descent) are not ap-
plicable to the problem in hand. However, in most practical
cases, like the one treated in this paper, the current value
of the active exploration criterion can be estimated from the
UAUVs sensor measurements. In other words, at each time-
stepk, an estimate ofJk is available through UAUVs sensor
measurements,

Jn
k = J

�
x(1)

k ; : : : ;x(NR)
k

�
+ xk (5)

whereJn
k denotes the estimate ofJk andxk denotes the noise

introduced in the estimation ofJk due to the presence of
noise in the UAUVs sensors. Please note that, although it is
natural to assume that the noise sequencexk is a stochastic
zero-meansignal, it is not realistic to assume that it satis�es
the typical Additive White Noise Gaussian (AWNG) property
even if the UAUVs sensor noise is AWNG: asJ is a
nonlinear function of the UAUVs positions (and thus of
the UAUVs sensor measurements), the AWNG property is
typically lost.

Apart from the problem of dealing with a criterion for
which an explicit form is not known but only its noisy
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