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Vehicles for Exploration of Unknown Static & Dynamic Environments

A. Ch. Kapoutsis, S. A. Chatzichristo s, L. Doitsidis, J. Borges de Sousa and E. B. Kosmatopoulos

Abstract—In this paper, we present a new approach that (active SLAM-TT), see e.g., [4], [5], [6], [7] and the
is able to efciently and fully-autonomously navigate a team references therein: using the information received so far,
of Unmanned Aerial or Underwater Vehicles (UAUV'S) when  1he yAUV next positions are designed so they optimize
deployed in exploratlon_ qf unknown static and dyn_amlc envi- the mapping information of the SLAM-TT algorithm. One
ronments towards providing accurate static/dynamic maps of . . ’
the environment. Additionally to achieving to ef ciently and ~ POssible way to attack such a problem is as follows: check
fully-autonomously navigate the UAUV team, the proposed all feasible next UAUV positions (e.g., all next UAUV
approach possesses certain advantages such as its extremelyyositions that do not violate obstacle avoidance, maximum
computatlone_ll simplicity and scalability, and the _fact that it speed, communication, etc constraints) and nd the ones
can very straightforwardly embed and type of physical or other that optimize some information metric that corresponds to
constraints and limitations (e.g., obstacle avoidance, nonlinear ;
sensor noise models, localization fading environments, etc). ~ the accuracy of the SLAM-TT algorithm; then, move to
the positions that optimize this information metric, and so
on. Different types of such information metrics have been

Typically, when a single Unmanned Aerial or Underwaproposed, with the most popular being the trace of the EKF
ter Vehicle (UAUV) or a team of UAUVs is deployed to error covariance matrix, see e.qg., [4], [5]. In such a case the
map (explore) an unknown static or dynamic environmentyauvs are moving to the next positions that minimize the
the static (landmarks) and/or dynamic (targets) features ﬁf/erage (expected) EKF estimation error.
the environment as well as the positions of the UAUVS There two big issues with the above mentioned approach:
themselves are estimated through a so-called SimultaneqHg rst is scalability, since it is computationally not feasible
Localization And Mapping and Target Tracking (SLAM-TT) to check all possible combinations of next UAUVs positions
algorithm, which employs an EKF or similar approach tQqthis is practically infeasible even in the single UAUV case).
simultaneously estimate all the above-mentioned quantitiephere are, of course, many different approaches that relax
see e.g. [1], [2], [3], [4] and the references there in. Ovejhe computational requirement of checking all possible next
the past years, very powerful approaches have been devigbsitions at the expense of sacri cing ef ciency. However,
oped that can quite ef ciently provide the estimates of theven in the unrealistic case where in nite computing power
landmarks', targets' and UAUVs' positions, provided that theyould be available, as these algorithms are based on EKF
trajectories of the UAUVs are ef ciently designedowever, _ which, in turn, is based on linearizing the nonlinear
ef cient deSign of the UAUV trajectories is not trivial: in multi-UAUV/sensor dynamics — the presence of nonlinear
most cases awff-line design of the UAUV trajectories is constraints (e.g., for obstacle avoidance or for not leaving a
performed. Off-line design of the UAUV trajectories is, ofpre-speci ed area) may be destructive to the ef ciency of the
course, by no means a guarantee of performance as #grall active exploration mission. The results of such a case
UAUVs may enter into highly unobservable states, theyre depicted in Figure 1: three UAUVs have been deployed
may spend “too much time” in areas with no importanfor estimating the location of 30 static landmarks and their
information for the exploration task, while they may passrajectories are designed so they minimize the trace of the
very fast through very crucial areas for the exploration tasligKF error covariance matrix, while they avoid obstacles
producing thus a very poor map of these areas, etc. (landmarks) and they remain within the culpel;+ 1]3.

For this reason, the last few years special attention haW?though, in the time-interval0;79] the overall algorithm
been paid in developing techniques factive exploration pehaves quite ef ciently, it starts diverging as soon as the
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(practically infeasible to compute in real-time the opti-are related to the matrice$ and XR through a nonlinear
mal UAUVs trajectories) is present there too: calculatindunction that admits the form

the optimal UAUV trajectories is an NP-complete problem R
and, for this reason, relaxations or approximations of the Y = HXGXTX)

opFimaI trajectory computa_tic_ms are required. Despite th\'7?/hereH is the nonlinear vector sensor function aKdis
quite successful and promising results of such approach sensor measurement noise vector. Let asaenote
in small-scaleapplications or applications where suf cieat the estimate ofX as generated by a standard SLAM-TT
priori information_ is provided (e.g., fo_r.cases where.a sing| lgorithm (e.g., an EKF-based one). Apparently, different
autonomous vehicle is u'sed or an initial goqd es'umgte %auv trajectoriesXR(t) result in different accuracy for the
the enwronmentgl map 1S p_rowd_ed, _etc), their extension 1§ apm.-TT algorithm. Theactive exploratiorproblem is that
Iarge-spale real-life applications is still an open issue. of generating on-line the trajectories of the UAUXE(t) so

In this paper, we present.a_new approach t.hat OVETCOMER:t the estimation accuracy of the SLAM-TT algorithm is
the shor'tcomlrjgs of the existing methodologies. There af timized. Additionally to optimizing SLAM-TT accuracy,
two _ba5|_c attributes that rende_r the P“’p??ed approach e design for exploration using UAUVs will have to take
tractive: its extremely computational simplicity and the fac nto account the — sometimes very strict — limitations of

that it can straightforwardly incorporate arbitrary constraint§ne environment the UAUVs operate on: safe navigation
and limitations that_are met in real-life appl|cat|o_n.s. Theho(Plinear sensor noise characteristics, and limited visibility
propo_sed appro_ach is based on the. so-called Cognitive-basgdyne * yauvs sensors are some of the limitations that
Adaptive thlmlzatlon (.CAO) ‘.”"go”thm that has be_en SUCtender multi-UAUV autonomous navigation for exploration
cessfully implemented in multi-UAUV optimal surveillance

a very challenging task. Below, we list all different major
coverage prolblems (81, [9]. T_he approach of [8], [9] Was1imitations/cha|lenges that any strategy for such a problem
shown to ef ciently handle arbitrary number of UAUVs and has to take into account:
maps of arbitra}ry complexity and n umber of features. AS. thﬁ\l#_—Noi:se) The typical assumption made in most robotic
proposed in this paper approach is based on .the eXtens'.ona%plications that the sensor noise is additive Gaussian noise
the approach of [8], 3], it inherits all these nice propertiesg very restrictive and not realistic in many UAUV appli-
1. AuTONOMOUSMULTI-UAUV NAVIGATION FOR cations. For instance, in UAUVs sonar- and vision-based

EXPLORATION OF UNKNOWN ENVIRONMENTS sensors, the sensor noise affect the sensor measurements in a

Consider a team ofik UAUVs moving in a 3D environ- NonLinearfashion: typically, the noise _affectiljg sqch sensqrs
ment in order to estimate as accurately as possible the 3p Proportional to the sensor-to-sensing point distance, i.e.,
positions of N, static features (landmarks) as well as thé"€ larger is the UAUV-to-sensing point distance, the larger
3D positions ofNy moving features (dynamic targets). The'S the sensor noisé\s a re§ult, it is more realistic to assume
UAUV sensors are equipped proprioceptive measuremerfisnultiplicative sensor noise model that takes the form
(e.g.., .from GPS_or mgrtlal se_nsors) to propagate.thew sta_te y= h(xq)+ h, (xg)x 1)
(position and orientation) estimates, and are equipped with
exteroceptive sensors (e.g., laser range nders, cameragherey is the sensor measurememntq are the positions
sonars, etc) that enable them to measure their distance githe UAUV and the sensing point (landmark/target/another
bearing from other robots and landmarks. To simplify outUAUV), respectivelyh(x;q) is the sensor model in the noise-
analysis, we will assume that the position and orientatioftee casehi(x;q) is a nonlinear function ok andq [e.g.,
(pose) of each UAUV are known with high accuracy withinh, (x;q) is the distance betweenandq] andx is a standard
the global frame df reference (e.g., from GPS and IMU Gaussian noise.
measurements). (LimVis) In addition to the (NL-Noise) limitation, the UAUV

Let x- andx| denote the 3D position of thieh landmark exteroceptive sensors are of limited visibility. As a result,
(resp. target)x® denote the position or pose of tth UAUV  additionally to the nonlinear sensor noise assumption (1),
and the sensor model for the exteroceptive sensors should be
augmented to count for the limited visibility constraint.
Moreover, the sensor model must be augmented to count for
denote the matrices of all features to be estimated and #fle case where there is no line-of-sight between the UAUV
UAUVs positions (poses), respectively. Furthermore,Yet and the sensing point (e.g., there is an obstacle in between).
denote the vector of all UAUVS' sensor measurements. IAs a result, the actual sensor model becomes:
the most general case we have that the sensor measurements

unde ned ifkx gk thres
LIn other words, we will assume that the UAUVs are perfectly localized _ unde ned if there is no line-of- @)
and thus we will deal only with the problem of Simultaneous Mapping /X a4~ 2 sight betweerx andq
and Target Tracking — (SM-TT). It has to be emphasized that the proposed : . . ;
approach can be easily extended to deal with the SLAM-TT case, i.e., the h(X’ q) + hX (X’ q)x otherwise

case where simultaneously to estimating the static/dynamic map, the ove% d h £ UAUV
approach estimates the UAUVs poses by combining the proprioceptive al ere_yﬁ q enotes t. € seqsor mea;grement rom an
exteroceptive measurements of the UAUVSs. at positionx to a sensing point at positian thresdenotes the
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Fig. 1. Autonomous exploration by moving towards minimizing the trace of EKF error covariance mdagrix3; N. = 30; Nyt = 0, by assuming unlimited
visibility, perfect localization and in nite computing power. The estimation error starts diverging as soon as the UAUVs hit the boundary of the cube
[ 1;+1]% the UAUVs are constrained to remain within.

visibility threshold beyond which the vision or sonar sensor [1l. PROBLEM DEFINITION

does not “see” an#t k denotes the Euclidean norm. g d be th g . .
. . . L In order to describe the proposed approach we need some
(ObsAvoid) As in any real-life robot application, the UAUV geliminaries. LeP = fX(I)gi'\iRl denote the con guratiohof

navigation system must make sure th_at_the UAUVs avOlthe UAUV team, whered denotes the position of thieth
obstacles as well as they remain within a pre-specie AUV. We will say that a landmark or a target= ( X;y; 2)
operational area. Usually, it is realistic to assume that tqg visible if there exists at least one UAUV so that e

UAUVs can detect with accuracy the position of the obstacles ) )
nearby. the UAUV and the poin are connected by a line-of-

sight;

the UAUV and the pointg are at a distance smaller
than a given threshold value (de ned as the maximum
distance the UAUVS' sensor can "see").

(Scalable) Finally, a main issue for any multi-UAUV nav-

igation algorithm for exploration is scalability. Of course,
scalability is an issue in any multi-robot application. In the
case of underwater multi-UAUV applications, the scalability ] )
issue becomes way more signicant mainly due to th&ivenaparticular team con guratidd , we letV denote the
limited bandwidth of UAUVs communication systems thasubset of alvisible landmarks and targetse.,V consists of
allow only a few hundreds of bits/second to be transmit@ll landmarks and targetsthat are visible from the UAUVs.

ted/received.

Havi Il th limitati . ind d 2For simplicity, we will assume that all UAUVs are of xed and known
aving all these limitations in mind, we now procee toorientation. All the results can be easily extended to the case of variable

present the proposed methodology. orientation.

1183



Also, for any landmark or targef=( X;y; 2), let  denote is a an extension of the original CAO version of presented
its estimate as produced by SLAM-TT. We will say that theand analyzed in [11], [12]. The main difference is that the
landmark or the targeq is currently accurately-estimated work of [8], [9] extended the CAO approach of [11], [12] so
if the normed-errorkq @kj is below a certain accuracy that it ef ciently takes care of the various constraints of the
threshold. We will denote wittA the set of all landmarks type (ObsAvoid). Below, we provide the main details of the
and targets that are currently accurately-estimated. PleaSAO algorithm as employed in the framework of the active
note that in case a landmark becomes accurately-estima&loration problem.
then it wil remain accurately-estimated thereafter (i.e., it We start by noticing that the active exploration criterion
remains withinA thereafter); however, this is not true for (3) is a function of the UAUVs positions, i.e.,

a moving target which may belong #» at some point and _ ... (NR)
then leave this subset later. J=Jd XTI 4
, E:;y using the above de nitions, we introduce the follow-\yherek = 0:1:2;::: denotes the time-indexy denotes the
Ing* active explora'%on cost criterian value of the active exploration criterion at theth time-
JP) = min  kx® qk2d q step,x(kl); o ;xﬁNR) denote the position vectors of the UAUVs
A2\;g62 12 LR 1;:::;NR, respectively, and is a nonlinear function which
+K dg 3) depends — apart from the UAUVs positions — on the partic-
q6% [ A ular environment where the UAUVs live (e.g., position of
landmarks/targets).

where K is a user-de ned positive constant. Having the D he d d  the f " h icul
UAUV team minimizing the above criterion, is equivalent ue to the depen ence o the u_npt nont epart|cu_ar
to have the UAUVs come as close as possible to thoSfvironment characteristics, tleplicit form of the function

landmarks/targets that are currently visible and have not s .not. knov;/nn_p;]racncal situations; az a result, standard
been accurately-estimated [rst term in the RHS of (3)]opt|m|zat|on algorithms (e.g., steepest descent) are not ap-

and, concurrently moving the UAUVS so that they “See,plicable to the problem in hand. However, in most practical

those landmarks/targets that are currently not visible a Sﬁs’ I|k_e the ?ne t_reate_d n this pakl)per, t_he cu(;rfent varl]ue
not accurately-estimated [second term in the RHS of (3) 'AtU\e/ active exploration C“te”OT car;] © est(ljmate rorr]n the
In other words, the rst term is responsible for moving the $ sensor measurements. In other words, at each time-

UAUVs closer to the landmarks/targets so that they reducséepk’ an estimate of is available through UAUVs sensor

the sensor noise effect and they can “see them better”, whifgeasurements,

the second term is responsible for moving the UAUVs closer P=1 x(kl);:::;x(kNR) + Xg (5)

to landmarks/targets that “have not seen before” (or “have

been poorly seen”). The constaltserves as a weight for whereJ] denotes the estimate af andx, denotes the noise

giving less or more priority to one of the terms of the RHSntroduced in the estimation afc due to the presence of

of (3). Please note that if the UAUVS' trajectories achievenoise in the UAUVs sensors. Please note that, although it is

to render the value ol zero (or sufciently small), then natural to assume that the noise sequexnce a stochastic

the overall active exploration mission has been successfulgro-mearsignal, it is not realistic to assume that it satis es

accomplished provided that the position of all UAUVs isthe typical Additive White Noise Gaussian (AWNG) property

accurately known. even if the UAUVs sensor noise is AWNG: as is a
nonlinear function of the UAUVs positions (and thus of

IV. THE COGNITIVE-BASED ADAPTIVE OPTIMIZATION the UAUVs sensor measurements), the AWNG property is

APPROACH typically lost.

Having de ned the active exploration criterion, we will ~ Apart from the problem of dealing with a criterion for
now proceed on presenting the proposed algorithm faghich an explicit form is not known but only its noisy
autonomously navigating the UAUVs towards minimizing
such a criterion. The algorithm to be used is based on
the so called Cognitive-based Adaptive Optimization (CAO)
approach originated in the references [10], [11], [12], The
version of the CAO algorithm used within the proposed
approach takes the same form as the one of [8], [9] and

3Please note that the subsat cannot be calculated in real-life as
its calculation requires knowledge of the true landmark/target positions.
However, in practice the subsét can be estimated with high accuracy
from e.g., the EKF error covariance matrix (e.g., if all three elements
of the diagonal of the EKF error covariance matrix that correspond to a
particular landmark/target are below a certain acguracy threshold, then this
landmark/target belongs t& ). Similarly the term B[ A dqg cannot be
computed in practice as this term involves those landmagks/targets that are
i{alvisiblgz This problem can be qyercome by noticing thgfy [ o dq=

qdq @V A dq and the integral 0|dq is constant.
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