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CHAPTER 8

SIMPLE REGRESSION METHODS

In the preceding three chapters, several major classes of time-series forecast-

ing methods were examined—exponential smoothing, decomposition,
autoregressive/moving average, and filters. Various models within each class
were presented, models appropriate for different patterns of data and dif-
ferent conditions.

In this chapter and the next two, we will examine another approach to
forecasting—explanatory methods. It is one thing to fit a model (such as an
exponential smoothing model) to a time series. It is quite another to come up
with other variables that relate to the data series of interest and to develop
a model that expresses the way the various variables are related.

Thus these chapters introduce a new concept in the attempt to forecast. A
forecast will be expressed as a function of a certain number of factors or
variables that influence its outcome. Such forecasts do not necessarily have
to be time dependent. Developing an explanatory model facilitates a better
understanding of the situation and allows experimentation with different
combinations of inputs to study their effects on the forecasts. In this way,
explanatory models can, by their basic formulation, be geared toward inter-
vention—influencing the future through decisions made today.

In the application of simple regression, the focus of this chapter, we assume
that a relationship exists between the variable we want to forecast (the
“dependent” variable) and another variable (the “independent™ variable).

Furthermore, we assume that the basic relationship is linear. Thus when we
discuss simple linear regression, we mean relationships where Y, the item to
be forecast, is a linear function of X, the independent variable. Obviously
there are many situations in which this is not a valid assumption; for example,
if we were forecasting monthly sales and it was believed that those sales
varied according to the seasons of the year, such an approach would be
inappropriate (unless the nonlinear seasonality were first transformed into a
linear form). It may be, however, that if we were forecasting the same sales
items, but on an annual basis, these sales could be modeled using a linear
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Figure 8-1 Projecting Annual Sales.

relationship. Figure 8-1 represents the pattern of data points that might exist
when we look at annual sales.

It can be seen in Figure 8-1 that a straight line sloping upward (that is, a
trend going upward) as we go from left to right would give a fairly good
approximation of future sales. This was the kind of pattern that we saw in
Chapter 5 that could be handled with Holt’s linear exponential smoothing.
In this chapter, however, we consider a method of handling the same type of
pattern, which has different characteristics than the linear smoothing techni-
que.

Figure 8-1 and those that we have considered in earlier chapters all involve
forecasting some variable in terms of the time period. Thus, if we were to
graph each of these situations, we would have the time variable on the
horizontal axis and the variable that we wish to forecast on the vertical axis.
Simple regression analysis is a technique that can deal with this type of
relationship. We therefore assume that the independent variable X is the time
(for example, X can take the values of 1, 2, 3, 4, 5, 6, 7, or 1982, 1983, 1984,
1985, 1986, 1987, 1988, in Figure 8-1).

There are a number of situations where we may want to forecast one
variable on the basis of its relationship with two or more independent
variables, one of which may be time. Multiple regression analysis, the topic
of the next chapter, deals with this type of situation.

Simple regression also can be used when the single independent variable is
not time. Consider, for example, a forecasting need faced by a large mail-
order house. Each day a tremendous amount of mail is received, much of it
containing orders that have to be filled. The mailing department has learned
through experience that the number of orders to be filled seems to be related
to the weight of the mail. They feel that it would be extremely useful to them
if they could weigh the mail when it arrives in the morning and use that
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weight to predict the number of orders that will have to be filled that day, so
they can schedule the time of the people who will fill those orders and decide
whether overtime will be necessary.

As a first step in determining whether a relationship exists between mail
weight and orders, they have kept a record over several days of the weight
of the mail each day and the corresponding number of orders. These pairs of
values can be plotted on a graph to identify the relationship between the
weight of the mail and the number of orders, if such a relationship exists. It
is evident from Figure 8-2 that there is a relationship between the weight of
mail and the number of orders. This means that as the weight of mail
increases, so does the number of orders. Furthermore, such a relationship is
called linear because increases (or decreases) in the amount of mail bring
proportional increases (or decreases) in the number of orders received.

The linearity of the relationship can be seen by looking at Figure 8-2 and
realizing that the best way of describing the relationship between the weight
of mail and the number of orders is the straight line that passes through the
middle of all the points that denote weight of mail and number of orders.
Figure 8-2 is called a scatter plot or diagram. It helps us visualize, graphically,
relationships (or lack thereof) between pairs of variables. The straight line in
Figure 8-2 is called the regression line, which can be computed statistically
(see below), thus allowing us to measure the extent of the relationship
between weight of mail and number of orders, that is, how much the number
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Figure 8-2 Plot of the Number of Orders and Mail Weight.



162 Simple Regression Methods

of orders will increase (or decrease) when the weight of mail increases (or
decreases). If such a relationship can be measured, it is obvious that it can be
used by the department to forecast the number of orders to be filled each day
by the weight of mail received. Such knowledge can improve planning by
assigning the right number of people to process orders each day.

This requires an explanatory model between weight and the number of
orders. The method we shall examine in this chapter will aliow us to obtain
such a model through the statistical method of simple regression.

In the use of simple regression, the starting point is the assumption that a
basic relationship exists between two variables and can be represented by
some functional form. Mathematically it can be written as

Y = f(X).

This states that the value of Y is a function of (or depends on) the value of
X. If it is assumed that the relationship is linear, it can be written as

¥ = a+bx» 8-

Since this is the general form of any linear relationship, it is important that
the reader understand just what this means. Suppose that the value of X is
0. In such a case ¥ would have the value a. Thus « is the point at which the
straight line intersects the ¥ axis. If we refer again to Figure 8-2, this would
mean that when the weight is 0 pounds, the number of orders would have the
value of a, which we would reason to be 0, because if no mail is received, no
orders are received (by mail). The value of 4 in Equation (8-1) is called the
regression coefficient and indicates how much the value of ¥ changes when
the value of X changes one unit. Thus, if we are comparing the number of
orders from 40 pounds of mail with the number from 41 pounds of mail, we
would expect an increase of & orders from that additional pound of mail. In
the next section of this chapter we discuss exactly how the values of 2 and b
can be computed for the mail-order example. Before doing so, however, it is
useful to discuss briefly the concept of a linear relationship between two
variables.

In many instances the relationship between two variables with which the
manager is concerned is linear. In others, although the relationship does not
appear to be linear when plotted, it might be possible to make it linear
through some appropriate transformation of one of the variables, which

*Woe use ¥ to indicate an estimated or forecast value for Y. We use Y to indicate an actual
or observed value.
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would result in a new variable that does have a linear relationship with the
other variable.

A simple example will help to illustrate this point. Suppose we have two
variables ¥ and W, whose relationship can be written as ¥ = a + b/W.
There is not a linear relationship between Y and W. However, if we let
X = 1/W, this equation can be rewritten as ¥ = a + 5X, which is a linear
relationship.

It is also possible to transform exponential relationships into linear ones
through the use of logarithms. Many other nonlinear relationships can
therefore be made (transformed to become linear). Although we realize that
the topic of transforming nonlinear relationships is not an easy one, we want
to point out that such transformations are possible and enhance the applica-
bility of regression analysis to many more types of relationships than just
linear ones. The interested reader can find more details in Makridakis,
Wheelwright, and McGee (1989).

There are many situations in which regression analysis can be applied
successfully and appropriately. The two main strengths to its application in
forecasting, are (1) regression analysis can be used to explain what happens
to the dependent variable through changes in the independent variable(s),
and (2) it uses a statistical model to discover and measure the relationship if
one exists. Later on in this chapter we shall see just how this can be done.

DETERMINING THE PARAMETERS OF A STRAIGHT LINE

In the preceding section the notion of a linear relationship that could be
represented mathematically as ¥ = a + bX was presented. However, unless
the values of @ and b can be estimated, the mangaer cannot use the relation-
ship between X and Y to forecast. What is needed, therefore, is a means of
estimating the values of @ and b. These values are referred to as parameter
estimates in the equation for a straight line. Several methods can be used to
estimate these parameters. Perhaps the most straightforward technique is to
plot the historical observations, as in Figure 8-2 for the mail-order example,
and to draw visually a line that passes through the middie of these points. In
the mail-order case the line would begin at 0.0 and pass approximately
midway among the historical points. Once this is done, the values of the
parameters a and b could be read off the graph. Since a is the point at which
the line intersects the Y axis, its value would be 0 in this example, and the
value of b would be the increase in ¥ (the number of orders) for a unit
{one-pound) increase in X.

Although the graphical method can work fairly well in this example, we
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often have several hundred observations that are widely scattered. Thus it can
be difficult to draw a straight line that in some sense will give the best
approximation of the relationship. What is needed is a technique for deter-
mining the values of « and 5 that can be used consistently and gives the “best”
result. Regression analysis uses such a method, referred to as the method of
least squares. To see how it fits a straight line to historical observations, we
consider a simple example that includes only four observations,* the values
of which are plotted in Figure 8-3. The dependent variable (the item we want
to forecast) is the cost of production per unit, and the independent variabie
(the item that determines the cost of production) is the number of units
produced. Thus we would like to determine the relationship between the cost
and the number of units in such a form that when we specify the number of
units to be produced we can forecast (estimate) their cost,

The dashed line in Figure 8-3 approximates the straight line whose
equation is ¥ = @ + X and for which we shall determine the values of a
and b. We shall use the method of least squares to determine these values in
such a way that the line represents the ‘‘best” linear relationship for these
four points.

The rationale of the method of least squares is that the distance between
the actual observations ¥ and the corresponding points on the line ¥ should
be minimized. More precisely, the criterion is that the sum of the squared
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Figure 8-3 Forecasting Production Costs Based on the Number of Units Produced.

*The reader should note that for practical purposes, regression analysis can be applied
successfully only when many data points are available. Here we have chosen an example
with cnly four data points to keep the arithmetic at a minimum and to focus attention on the
concepts.
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errors between the actual cost ¥ and the estimated ¥ found through the
regression line should be kept as small as possible by appropriately choosing
a and b. To see what this involves, we consider Figure 8-4, in which the
observed values (costs) are labeled Y,, ¥;, Y;, and ¥,, the deviations (errors)
from the regression line (estimated costs) are labeled e, ¢,, e;, and ¢,, and
the points (costs) estimated by the regression line are labeled ¥,, ¥,, ¥;, and
¥.. The latter points are what we would forecast by using the regression line
with values of X, X;, X,, and X|, respectively.

In this figure each of the deviations (errors) can be computed as
e; = Y, — Y, and each of the values of the regression line can be computed
as¥, = a + bX,. The method of least squares determines the values of @ and
b in such a way that the sum of the squared deviations Z&? = (¥, — Y,)?
is minimized (hence the name least squares).

Through calculus we can determine the values for a and b in such a way
as to minimize the sum of squared errors, that is, Z¢?. Such values for a and
b are found by applying the following two formulas:

EXY/n — XY
inlaliall bl -2
b TXn — X @-2)
a = Y- bX (8-3)
where
Y = 2 4 and X = X
n n

and n is the number of observations (data points) with which the regression
is estimated.

Il i 1 1 > X

X, X

Figure 8-4 Quantities Used in the Method of Least Squares.
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166 Simple Regression Methods

To see how these computations can be made in practice, we return to the
example given in Figure 8-3. The data, the relevant computations, and the
resulting equation for the regression line are given below. The data and
computations to find the values of a and b are as follows:

Cost Units ¥ xt Xy
Y X
8 3 64 9 24
11 2 121 4 22
16 5 256 25 80
15 7 225 49 105
LY, = 50 X, =17 Y = 666 X = 87 ZX, Y, = 231

Y = 50/4 = 125

X = 17/4 = 425
Then
p - ZX¥n -~ X7 _ 231/4 - 12.54.25) _ 1.254
T IXin - X2~ 874 — (4.25)° )
a = Y —bX = 125 — 1.254425) = 125 - 533 = 7117
Thus

Y = 7.7 + 1.254X.

The values found using the regression equation ¥ = 7.17 + 1.254X are as
follows:

Y e F-7r Y- P
10.93 —2.93 —1.57 —4.5
9.68 1.32 —~2.82 -1.5
13.44 2.56 0.94 +3.5
15.05 —0.95 345 +2.5
Ze, = XY, - =0 Iy, -NH=0

To illustrate further how the method of least squares can be applied, we
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return to the mail-order example discussed earlier in this chapter. Table 8-1
lists some of the relevant data needed in calculating @ and b.
Using Equations (8-2) and (8-3), we obtain

IXYjn — X7 337,987/30 — 47.3(177.4) _

b= I¥m =X T 995929750 — @137 384
a = 1774 — 3.34(473) = — 4.36.
Thus
Y = — 44 + 38X

Now if a manager wants to forecast what the number of orders will be for
a given weight of mail, he or she can do so using this equation. For example,
if the company received 45 pounds of mail, the manager would estimate that
the number of orders ¥ would be

¥ = — 44 + 3845 = 166.6.

The reader will recall that earlier we reasoned that if no mail were received,
no orders would be received (by mail). If we applied the foregoing equation
to the extreme, however, it would say that if no mail were received, the
company would receive —4.4 orders, which is clearly absurd. This points up
the need for applying managerial judgment when using regression analysis
results and for identifying a range within which the linear relationship holds
but outside of which it may have little meaning. In this example the company
probably receives several pounds of mail each day unrelated to actual orders,
which would explain why on an average more than one pound of mail must
be received before any orders are received, as stated by the regression
equation.

Furthermore, it is possible to determine the regression line in such a way
that the value of a is equal to 0. The reasoning for doing so can be seen in
the next section when the statistical significance of the values of a and b is
discussed. At this point we can say that if the manager wants a to equal 0,
he or she can recalculate the regression equation (most computer programs
allow the user to force the regression equation to pass through 0, that is to
make a equal to 0), which becomes:

5 b
Y_ZX'
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170 Simple Regression Methods

The versatility and real power of simple regression have been explained
only partly so far. Although we have developed the equations necessary to
specify the most appropriate linear relationship, two other questions are of
concern. First, what is the reliability of the forecasts based on a given
regression line? For example, if this forecasting method indicates in the
mail-order example that the number of orders will be 166.6, how certain can
the manager be that the actual number of orders will not fluctuate between,
say, 146.6 and 186.67 Second, when is it not appropriate to say that one
variable is influenced by another because no real relationship between the
two can be established? (These two questions are discussed in the next
section).

THE PRECISION AND SIGNIFICANCE OF A REGRESSION
EQUATION

It is possible to make statistical statements about the significance of the
regression equations. The use of the statistical properties will also allow us
to make statements about the likelihood that future values will vary from the
forecast by certain amounts, the confidence that we can place in having
determined the most appropriate straight line, and the accuracy of the
coefficients a and ».

Several questions concerning the significance of an application of regress-
ion analysis can be dealt with in statistical terms. We consider three of them
at this point:

1. Is the regression coefficient b significantly different from 0, or did it just
occur by chance? The same question can be asked about the value of a.

2. What level of confidence can be placed in the regression coefficients a and
b, that is, how precise is the estimate of a or ? For what range of values
around & or b can the manager be confident that the true values of a or
b are within those ranges?

3. How confident can the manager be when making a forecast ¥ that the
actual value of Y will lie within a range around that forecast value, that
is, what is the precision of ¥?

Turning first to the question of the significance of the regression coefficient
b, we would like to know whether the true value of b is really different from
0. (If b is not different from 0, the best model will be ¥ = ¥.) Since we have
estimated the value of b on the basis of a limited number of observations, we
might have found a value different from 0 merely by chance. Thus what we
would like to do, using statistics, is to say: if we suppose that the true value
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of b is 0, what is the likelihood (or chance) that we could have had our specific
value of b?

The statistic needed to determine the significance of a regression coefficient
is the standard error of that coefficient. For b this can be computed using
Equation (8-4)

—— ¥ 2 —
sp, = YEX = ¥ - 2) 64

VEX, - X7

The numerator in this equation is called the standard deviation of regression.

This is the square root of the sum of the squared errors (¢, = ¥, — ¥))
adjusted for degrees of freedom. The denominator is the square root of the
sum of the squared deviations of X from the mean X. Because there is a lot
of arithmetic involved in computing SE,, the standard error of b, this
computation is usually done as an integral part of a computer program. To
see how this standard error can be applied in practice, we can compute it for
the mail-order example:

VEY, = T - 2)

SE, = =
' JEX, — X}
14.63
= 18993 = 0.098.

The value of the standard error tells us something about the precision of
the estimated regression coefficient b (whose value was found to be 3.8). By
making the assumption that the various values of 5 (which can be found from
many different samples, of size 30, of weight of mail and number of orders)
are normally distributed, we can establish the maximum possible error in the
estimated value of b (it is related to the value of the standard error of 0.098).
Thus, in the worst case scenario, which would include practically all cases, the
real value of b cannot be outside the range of 5 + 3SE,, or 3.8 + 0.294. That
is, & can vary from about 3.5 to 4.1. This means that the real value of b cannot
be 0 for any practical purposes.

Alternatively, we can compute the number of standard errors our value of
b is from 0. Since b = 3.8 we divide 3.8 by 0.098 and obtain about 38. Thus
the b value we computed is approximately 38 standard errors from 0. Using
a table of ¢ values, we find that the likelihood of computing a regression
coefficient in error by 40 standard errors or more is essentially 0. Therefore,
we can conclude with an almost 100% certainty that the regression coefficient
is significantly different from 0 in this case.
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Although the statistical theory behind standard errors may seem com-
plicated, its application is straightforward, particularly when a computer
program is used. Table 8-2, for instance, shows the computer output for the
mail-order example using ISP (Interactive Statistical Program). The Y
(denoting Yes) next to the regression coefficient s (POUNDSM)means that the
real value of b is significantly different from 0. That is, increases or decreases in
the weight of mail influence the number of orders not by chance but in a
consistent, statistical manner. Furthermore, under the heading P Value, the
value of 0 signifies the probability that the value of the computed coefficient is
equal to (-

The same computations can be found concerning the value of a. In this case
the standard error of ais equal to 5.35, which means that the computed #-test
for a = —4.4 is —0.82. Furthermore, the P Value is equal to 0.42, which
indicates that the likelihood that the real value of a will be equal to 0 is high.

Table 8-3 shows the same computer output as Table 8-2, except that the
value of a has been forced to become 0. The regression equation can be seen
to be

bl

= bX
= 3.77X.

o

The final point that we deal with here is the significance of an individual
forecast. We would like to know, once we have found the values of 2 and b

Table 8-2 Regression Results of the Mail-Order Example Using ISP

P
Variable Coefficient  Standard Error t Test Signif Value
a —4.374343 5.348527 -0.818 N 0.420
POUNDSM 3.84204 0.09787115 39.256 Y 0.000

Critical ¢ value from table (x = 0.05) = 2.048.

R = 0982, R(adjusted) = 0.982; R = 0.991;*

F?test = 1541.04; standard deviation of regression = 14.65156;
observations = 30; degrees of freedom for numerator = 1, for
denominator = 28.

F value from table (x = 0.05) = 4.17.

*The symbol for the square of the correlation ceefficient above is R* while in
equations (8-6) and (8-7) we use r’. This is so because the computer does not
distinguish between simple regression where r? is used and multiple regression (see
next chapter) where R is used.
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Table 8-3 Regression Results of the Mail-Order Example Using ISP

Variable Coefficient P
a 0.0 Standard Error t Test Signif Value
POUNDSM 3.772725 0.04953009 76.170 Y 0.000

Critical ¢ value from the table (x = 0.05) = 2.048.
R = 0982, R’(adjusted) = 0.981; R = 0.991;

FTest = 1504.44; standard deviation of regression = 14.82550;
observations = 30; degrees of freedom for numerator = 1, for
denominator = 28.

F value from table (@ = 0.05) = 4.17.

in our regression equation and have substituted a value of X into that
equation, how confident we can be that the true value of ¥ will be around the
value computed with ¥ = a + bX,Thatis, we would like to have a confidence
interval around this computed value of 7.

The basis for establishing the confidence interval of a specific forecast value
is the standard error of forecast SE,, which can be computed using

.—“2 — X2
SE, = ( %)( ‘/ 1+ 1 H) 8-5)

As with the standard error of the regression coefficient SE,, it can be seen
that the first factor in Equation (8-5) is simply the standard deviation for the
errors ¢; (adjusted for degrees of freedom), or the standard deviation of
regression. The second factor in expression (8-5) is an adjustment for how far
we are from X in making our forecast (that is, the difference between X;and
X), and the number of observations n used in determining the regression
equation. Note that if the values of X; are not close to the mean X and »n is
large, the second factor in Equation (8-5) is approximately equal to 1 and the
standard error of forecast, SE,is simply the standard deviation of the regress-
ion, If, however, » is small, or if the values of X; are close to the mean ¥, or
if the value being forecast X is far from X, then the second factor in Equation
(8-5) will be greater than 1, and the standard error of forecast will be larger
than the standard deviation.

1n the forecast we made earlier, the value of X was 45 pounds. Thus we can
substitute this value for X, in Equation (8-5) and obtain

SE, = 146 \/[1 4003+ @5 = 47-3)2] = 14.6(1.03) = 149.

2446
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In this example there is little adjustment in the standard deviation value of
14.6 because X is close to the mean value X. If we want to establish a
confidence interval for our estimate of Y (where we had ¥ = —4.4 +
3.8(45) = 166.6), this interval will be 166.6 + 2(14.9). Thus, we are 95%
certain that the true value of Y (that is, orders to be filled) will be between
136.8 and 196.4 when we receive 45 pounds of mail. Note that we use a value
of 2 to multiply the standard error because we assume a 95% confidence
interval, in which case the ¢ value required to multiply the standard error is
close to 2 (the exact value is 2.045). If we had wanted a 99.8% confidence
interval, we should have multiplied the value of the standard error by about
3. Alternatively, if we had wanted a 68% confidence interval, we should have
multiplied the standard error by the approximate value of 1. (See Figure 8-5
for confidence intervals of 68%, 95%, and 99.8%.)

The fact that the confidence interval surrounding a forecast varies accord-
ing to the distance we are from X is shown in Figure 8-5. As a practical
matter, the usable range of X" values—where the regression can be applied
confidently—depends on the amount of data used, the spread of X values
around their mean, and how well the regression model captures the variation
in these data.

From the mail-order example the amount of information that can be
obtained from making these tests of significance should be evident. In this

/

/

99.8% ~
Confidence
i~ interval
68%
Confidence

720

Figure B-5 Ranges of Confidence of Individual Forecasts.
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instance we found that the regression coefficient » was significantly different
from 0 and that its true value would lie between 3.5 and 4.1. In addition, we
found that in estimating the number of orders included in 45 pounds of mail
we could be 95% sure that the orders would be between 136.8 and 196.4.
Since this is a wide range, it would require management to contemplate the
uncertainty surrounding the most likely forecast of 166.6 and take steps to
deal with situations where the orders to be filled are around the two extreme
ranges.

In concluding this section on signifiance, we want to emphasize one point:
the role that the sample size plays in this area. (The sample size is simply the
number of observations used in determining the regression line.) As a sample
size becomes larger, the width of the confidence interval becomes smaller, as
can be seen in Equation (8-5). Thus if we had 100 observations in the
mail-order example, the confidence interval on a specific forecast (for
example, for 45 pounds of mail) would usually be narrower than it was when
we had only 30 observations. Any time the manager can obtain additional
observations before computing a regression line, he or she should do so.

One of the advantages of simple regression analysis is that once the
relationship ¥ = a + bX has been determined, it can be used to make any
number of forecasts simply by inserting the value of X for which a forecast
of Y is desired. One caution: the basic relationship should be assessed
periodically. If the manager has some reason to believe that a change may
have taken place, it will be necessary to collect a new set of data and
recompute the values of a and b.

SIMPLE CORRELATION

The assumption made in the three preceding sections that dealt with simple
regression is that one variable is dependent on another. Often two variables
may be related, although it is not appropriate to say that the value of one of
the variables depends on or is influenced by the value of the other. In such
a situation, the correlation between the two variables can be found. The
coefficient of correlation r is a relative measure of the degree of relationship
that may exist between two variables. This coefficient can vary from 0 (which
indicates no correlation) to + I (which indicates perfect correlation). When
the correlation coefficient is greater than 0, the two variables are said to be
positively correlated; when it is less than 0, they are said to be negatively
correlated. For simple regression, the sign of the correlation coefficient is
always the same as the sign of the regression coefficient 5.
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The correlation coefficient can be found using the formula

nZX;Y, — LXXY,

= (8-6)
JriEXT — X JnZY! — BT

To compute thc correlation coefficient we need to substitute the various

sums in Equation (8-6) by their values as shown in Table 8-i. The value of
r, therefore, is

30(337,987) — 1419.6(5322)
/30(89,592.9)(1419.6)? , /30(1,281,220) — (5322)"

10,139,610 — 7,555111.2 _ 2,5844988 _ o0,

V672,522.84 /10,112,916 2,607,904.7

Since the value of r equals 0.991 (very close to 1), there is a very strong
positive correlation (association, relationship) between the weight of mail
received and the number of orders 1o be filled. As one goes up, so does the
other.

The advantage of a correlation coefficient is that it is a relative measure
and, as noted, it varies between 0 and + 1. Thus it is easy to recognize the
strength of a relationship between any two variables. A correlation coefficient
close to 1 means a very strong relationship. One that is close to 0 indicates
a weak relationship or none at all. On the other hand, if we want to measure
how much X influences ¥, then the value of the regression coefficient b is
needed. In this sense the correlation coefficient r and the regression coefficient
b provide us with complementary information. This is why all simple regress-
ion computer programs compute both 5 and r.

Another useful statistical measure in regression analysis is 7. The formula
for finding r* is given by

P o= explained variation* _ (Y, — P &)
- total variation (Y, — 7¢

r* varies between 0 and 1 and is a measure of the goodness of fit. It tells us
[see Equation (8-6)] the percentage of the total variation explained by the
regression line. In a perfect regression, where the errors between actual ¥; and

*It is called exp/ained because it improves (that is, reduces) the variation or error over the
alternative to the regression line, which is to use the mean value ¥, as a way of forecasting.
The amount of improvement, that is, ¥, — ¥, is then the exp/ained variation of regression,
over and above that of the mean.
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estimated ¥, are 0, the value of 7 will be equal to 1. If 7 is close to 0, the
regression equation ¥, = @ + bX, does not explain much more than if the
mean (¥ = 7)is used as an alternative to the regression line.

Table 8-4 shows the total variations between the production costs Y, used
previously and their mean ¥ = 12.5. If each of these four distances ¥, — ¥
is squared and the values are summed, the sum will provide us with the
denominator of Equation (8-7). The calculations can be seen in Table 8-4, the
explained variations (deviations) can also be seen in Table 8-4 as the dif-
ference between ¥, and Y. If these variations are squared and the values
summed, the sum will provide us with the numerator of equation (8-7). The
ratio of the two squared sums is the value of . Thus,

, _ X¥, - P _ 23204

rt = (T, = P = a4l = 0.566.

This means that the regression line ¥ = 1.254 + 7.17X explains 56.6% of
the total variation in costs by the variation in the amount of units produced.
Obviously, with only four data points this statement may not mean much.
However, if a larger amount of data ia available, 7 will tell us what percen-
tage of the total variation in ¥ is explained by variations in X.

Let us now compute 7, or the coefficient of determination, as »* is also
known, for the mail-order example of the preceding sections. Again we will
use Equation (8-7),

) X(?,— ¥)* 808

ro= T—ﬁ 3 - 0.982.

The appropriate interpretation here is that for the 30 sample observations
that were used in fitting the regression line, 98.2% of the variation from the
mean ¥ was explained by that regression line ¥ = —4.4 + 3.8X. Thus,
almost all changes in the number of orders received every day can be ex-
plained by the weight of the mail received that day. The remaining 1.8%,
which cannot be explained, is caused by random factors (for examples, some
people might use heavy envelopes and paper) or by other variables in
addition to weight (such as requests for information as a result of an advertis-
ing campaign).

In simple regression the square root of 7 is equal to the simple correlation
coefficient. This can be verified in the case of the mail-order example. The
square root of 0.982 is equal to 0.991, the correlation coefficient computed
using Equation (8-6).

Another useful statistical measure used in regression analysis is the F ratio.
This is given by



Table 8-4 Total and Explained Variations for the Production Cost Example

Value
Estimated
by Regression

Explained
Variation
(Y, - ¥y

Total
Variation

Mean
Cost

Actual
Cost

v, - o

A

Line ¥

Observation

1.465
7.952
0.884
11.903

20.25
2.25
12,25
6.25

10.93

9.68
13.44
15.95

12.5
12.5
12.5
12.5

— NN
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(¥, — PY = 23.204

(Y, - 7Y =41
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B(F,— PRIk~ 1) |
F =3 Py —n ®-8)

where n = sample size (number of observations)
k = number of variables (k = 2 for simple regression).

It should be readily apparent from Equation (8-8) that the value of the F
statistic is similar to the /* calculation—except that it uses the “unexplained”
variance in the denominator and it is dependent on the value of the sample
size n. As n gets larger, the number in the denominator in the F statistic gets
smaller and the F statistic increases in value.

The F test for the mail-order example is

F o 20— PPk - 1)
(Y, ~ ) /n - k)

_ 808/1
" 14.63/28

= 1540.

This value of F must be compared with the appropriate entry in a statistical
table of F-test values to determine its significance for a given confidence level.
However, because most computer programs provide this value, it is not
necessary to know how to use such a table. What is necessary is that the F
value computed using Equation (8-8) be greater than the corresponding value
from the table, which in our case (using a 95% confidence interval) is equal
to 4.18. In the mail-order example, where the computed Fis 1540, which is
much larger than 4.18, we conclude that the relationship between the number
of orders and the weight of mail is statistically significant (that is, it is not the
result of chance).

Let us now determine the significance of the relationship we computed for
the simple example of four data points. The reader will recall that we found
that 7 = 0.566, or 56.6% of the variation was explained. Using equation
(8-8), we can compute the F statistic for this example as

o321
To1782 T 261.

To determine whether the relationship ¥ = —4.4 + 3.8X is significantly
different from 0, we have to compare this F value of 2.61 with the correspond-
ing value from the F table. At the 95% level and for four observations such a
value is 6.61. Thus in this example, even though # = 0.566, we cannot say
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with any confidence that the regression line is significantly different from 0.
That is, the relationship between units produced and cost may well be the
result of chance, because the computed F of 2.61 is smaller than the corres-
ponding value of 6.61 from the F table.

The importance of computing the overall significance of a regression
equation should be emphasized. Only when the manager can say that it is
significant does it make sense to use the regression equation to forecast. That
is, if the sample size is so small or the relationship so weak that it is not
significant, even though the coefficient of determination may be close to 1, the
manager should not base a forecast on those data and the corresponding

regression line.

THE REGRESSION EQUATION AS A MODEL

The regression equation ¥ = a + bX, like any other form of equation,
can be thought of as an abstract model that represents some aspect of reality.
When, for example, we say that ¥ represents sales and X represents time,
what we are actually doing is making an abstract model. We try to simplify
reality and represent it in terms of the interaction of two factors only. As
managers are well aware, however, this is a gross simplification; reality is
much more complex. Sales are not influenced by time alone, but by a myriad
of other factors such as GNP, prices, competitors’ actions, transportation
costs, production costs, advertising, government policies, or even the illness
of a salesperson. Then how can we ignore them?

In any modeling effort there is a choice: we can either construct a simple
model that may not completely duplicate reality, or we can build a complex
model that is more accurate, but also requires a large amount of effort and
resources to be developed and manipulated. Even if the most sophisticated
model could be developed, there would still be some part of reality that could
not be explained by the model. The number of factors in real-life phenomena
is infinite.

To capture the fact that a part of the real process cannot and will not be
explained by a regression model, we can use the term u to denote the
variations unexplained by the model. This term is often called the disturbance
term, or white noise, and it plays an important role in most forecasting
methods.

Thus to be precise, our simple regression equation is not ¥ = a + bX,but
Y = a + bX + u, even though the term « is seldom needed for calculation
or any other practical purpose. Its theoretical meaning is that the forecast can
vary from the estimated value Y=a+bX by an amount , the error, which
we can estimate in probabilistic terms, as we learned in the preceding sections

The Regression Equation as a Model 181

of this chapter. It becomes obvious, however, that the magnitude of the error
u will vary from model to model. Theoretically the more variables we in-
troduce, the smaller the range of values taken on by u. There is a limit,
however, to the number of variables we can employ, since they introduce
more complexity and higher cost. Thus we want to introduce the smallest
number of variables (the principle of parsimony) and at the same time achieve
a range of values for u as small as possible.

For the regression equation ¥ = a + bX + u to be statistically correct,
u must have the following properties:

1. The mean value of # must be equal to 0, because many factors that
influence Y are not included in the regression equation, However, their
influence is of opposite directions, so they tend to offset one another on
average.

2. The error term u must be a random variable. At any time period, some
of the factors not included in the equation will influence ¥ more than
others. This may result in a positive or negative . However, as long as
the individual values of  at each time period are random (not the result
of any systematic pattern), their effect on the estimated value of ¥ can be
determined probabilistically. Basically, we want the errors to be indepen-
dent of one another.

3. The disturbance term « must be normally distributed. (A normal distribu-
tion is commonly referred to as a bell-shaped curve dispersed around the
mean value of 0.} This is a consequence of the large number of factors
that influence Y that are not included in the regression equation. In this
case, as in many others, it is more probable that extreme variations will
cancel themselves out and thus be observed only infrequently, whereas in
the majority of cases the errors will be clustered around the mean value.
Such a pattern results in a normal distribution,

4. The variance of ¥ must be constant. This means that the error term must
neither increase nor decrease within the entire range of observations.

Violations in these properties of u can result in serious trouble, since the
complete regression model

Y = a+bX+u

will no longer be correct. As we shall see in Chapter 9, however, there are
ways of minimizing the likelihood that any of these properties will be violated
in a specific application.

From now on, as we have done before, we imply ¥ = a + bX + u when
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we write a regression equation, even though u will not be included. Thus we
use the term Y. That is

Y = a+bX+u
but we will use
f = a+ bX.
The same is true for multiple regression, where
Y = a+ bX, + b,X, + ,X; + ... + b,X, + u
but we will use
Y = a+bX +5b,X,+bX,+ ... +bX,.

Finally, when we use the sample data to estimate ¥, the difference between
the estimate ¥ and the actual Y is the regression, or residual error. We have
denoted such a value by e. The residual error e is different from u, because
it is the result of a specific and limited sample, whereas u would exist if it were
possible to have an extremely large sample or even to include all the data. Like
u, e must fulfill the four properties mentioned above.

In the next chapter the concept of regression will be extended to include
more than one independent variable, and methods of testing the assumptions
concerning the four properties required of u or e will be presented.
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